Utilization of manure feedstock biochars as P fertilizer for cotton

Agricultural Research Service, USDA
Agricultural Research Service

• USDA’s chief scientific in-house research agency
• Over 2000 scientists and post-doctoral researchers
• 90+ research locations (in US and abroad)

Vision

… to lead America towards a better future through agricultural research and information.
Coastal Plains Soil, Water, and Plant Research Center

Florence, SC

10 research scientists

Research focus:
- Cotton Genetics
- Manure
- Soil
- Water
Biochar

- myriad uses (industrial, municipal, agricultural)
- agricultural
 - emission reduction/adsorption
 - soil amendment
 - conditioning/reclamation, increase soil fertility
 - increase water retention, reduce N leaching
 - fertilization
 - nutrients (N, P, K, etc)
Biochar as Phosphorus Fertilizer?

- Limited nutrient
 - peak production (predicted 2033)
 - declining supply / increased prices
 - subject to geopolitical influences
 - major supplies are in Morocco, China, Western Sahara
 - reserves in Iraq, Algeria, Syria
Biochar as Phosphorus Fertilizer?

- Raw manure
 - not nutrient dense
 - limited transportation
 - excess nutrients
 - particularly N and P
 - also Cu and Zn
 - active vs passive treatment
 - economics and the political/regulatory landscape
 - limited land application
 - based on nutrient loads
 - pathogens, antibiotic resistance (ARB/ARG)

Thomas F. Ducey, Ph.D.
Coastal Plains Soil, Water, and Plant Research Center, Florence SC
Experimental Setup

- pot study (6.1 kg)
- *Gossypium hirsutum*
- 5 biochar feedstocks
 - chicken litter
 - turkey litter
 - beef manure
 - dairy manure
 - swine manure
- Produced at two temperature’s
 - 350 °C and 700 °C
Experimental Setup (con’t)

- biochar amendment based on P content
 - rate equivalent of 40 mg/kg P$_2$O$_5$
- N added at 50 mg N per kg soil (NH$_4$Cl)
- control treatment = unamended soil
 - low P forest soil (Norfolk loamy sand)
- limed to pH 6.0 prior to biochar addition
- irrigated twice daily (0.25” water/pot/day)
- plants harvested on day 60
 - leaf and stem samples collected
Phosphorus Amendment

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Desired application rate P_2O_5 (mg/kg)</th>
<th>Biochar application rate (g char/pot)</th>
<th>Biochar amendment rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-350</td>
<td>40</td>
<td>10.59</td>
<td>0.20%</td>
</tr>
<tr>
<td>D-700</td>
<td>40</td>
<td>6.31</td>
<td>0.10%</td>
</tr>
<tr>
<td>B-350</td>
<td>40</td>
<td>9.35</td>
<td>0.15%</td>
</tr>
<tr>
<td>B-700</td>
<td>40</td>
<td>6.06</td>
<td>0.10%</td>
</tr>
<tr>
<td>C-350</td>
<td>40</td>
<td>5.13</td>
<td>0.09%</td>
</tr>
<tr>
<td>C-700</td>
<td>40</td>
<td>3.41</td>
<td>0.06%</td>
</tr>
<tr>
<td>S-350</td>
<td>40</td>
<td>2.74</td>
<td>0.05%</td>
</tr>
<tr>
<td>S-700</td>
<td>40</td>
<td>1.81</td>
<td>0.03%</td>
</tr>
<tr>
<td>T-350</td>
<td>40</td>
<td>4.07</td>
<td>0.07%</td>
</tr>
<tr>
<td>T-700</td>
<td>40</td>
<td>2.91</td>
<td>0.05%</td>
</tr>
</tbody>
</table>
Soil Phosphorus

Phosphorus 40 mg/kg rate final extractable soil P level = 23.7 mg/kg
Plant Growth Results

Correlations
Leaf Weight vs Leaf Area
$r = 0.979 \ (P = 0.0001)$

Leaf Weight vs Stem Weight
$r = 0.857 \ (P = 0.001)$

Stem Weight vs Leaf Area
$r = 0.795 \ (P = 0.003)$
Phosphorus Rate Results

P Rate = -76.3 + (46.35 x Biomass)

P0, P20, P40, P60, S700, D350, C350
Blank (15.9), D350 (60.4), C350 (49.8), S700 (64.6)
Nutrient Results (con’t)

Iron

Boxplot of LF_{Fe}

Boxplot of ST_{Fe}

Boxplot of Fe_{fn}

Magnesium

Boxplot of LF_{Mg}

Boxplot of ST_{Mg}

Boxplot of Mg_{fn}

Leaf

Stem

Soil
Yet More Nutrient Results

Calcium

- Boxplot of *L.F.* Ca
- Boxplot of *S.T.* Ca
- Boxplot of *Ca* fn

Potassium

- Boxplot of *L.F.* K
- Boxplot of *S.T.* K
- Boxplot of *K* fn

Leaf
Stem
Soil
Conclusions

- Manure-based biochars make effective P fertilizers
 - free of pathogens and ARB/ARG
 - equal to or greater P rate responses compared to P$_2$O$_5$
- Similar uptake rates to conventional fertilizers
 - macro- and micro- nutrients
 - no toxicity concerns
- Low addition rates
 - allow for coupling with other biochars for conditioning purposes