Biochar composites for sustainable thermal packaging applications

Madan M. Manipati^a Carlos A. Diaz^a Kathleen Draper^b Thomas A. Trabold^a

a Rochester Institute of Technology
b Cinterest LLC
Rochester, New York

2022 North American Biochar and Bioenergy Conference Wednesday August 10th, 2022

Background

RIT

- Thermal packaging is used to transport temperature-sensitive products including vaccines, high-value food products, etc.
- The most common conventional material is expanded polystyrene (EPS), produced at very large scale and low cost but with significant environmental impacts.
- Objective: develop sustainable thermal packaging materials with reduced embodied carbon and end-of-life impacts, through use of biochar and waste biomass materials.

Materials

- Biochar composite materials evaluated vs. "Styrofoam", expanded polystyrene (EPS)
- <u>Biochar A</u>: derived from woody biomass, nominally spherical particles
- <u>Biochar B</u>: derived from agricultural residue, nominally rodshaped particles
- Organic binder derived from macroalgae
- Composites blended manually and formed into panels with silicone molds

Biochar comparison

Parar	neter	Biochar A	Biochar B
Bulk dens	ity [kg/m ³]	308.8	113.6
Organic carbon [% total dry mass]		87.9	44.4
H:C [molar ratio]		0.25	0.70
Surface area via butane activity [m ² /g]		322	286
Particle size (%)	< 0.5 mm	100.0	10.2
	0.5 – 1 mm	0	46.2
	1 – 2 mm	0	38.4
	2 – 4 mm	0	5.2

Biochar composite panel fabrication and drying Fabrication of panels Freeze Dryer (Harvest-right[™])

Thermal conductivity, k

- Consider a uniform cylinder conductor of length *l* with temperature T₁ at one end and T₂ at the other end as shown in figure above.
- The heat flows to the right because T_1 is greater than T_2 .

Ref: https://www.techglads.com/cse/sem1/thermal-conductivity/

Thermal conductivity calculation

Thermal conductivity, k [W/(m*K)] = (heat flow) (thickness of panel) = QL(area)(change in temperature) A ΔT

where:

- k = thermal conductivity [W/(m K)]
- **Q** = heat transfer through the material [J/s or W]
- L = thickness of panel [m]
- A = area of the body [m²]
- $\Delta T =$ temperature difference [K]

RIT

113

Heat flux and temperature measurement devices from FluxTeq

Complete system set-up (Ice maker, FluxTeq, Cooler, Simulation)

Time-varying FluxTeq data

Computed R-value & thermal conductivity

Thermal resistance (R-value)	EPS	Binder only	Binder + 50% Biochar A	Binder + 33% Biochar B
[(K · m ²)/W]	3.50	0.49	0.94	1.03
standard deviation (N = 3)	0.09	0.04	0.07	1.75

Thermal conductivity (k)	EPS	Binder only	Binder + 50% Biochar A	Binder + 33% Biochar B
[W/(m K)]	0.039	0.059	0.041	0.035
standard deviation (N = 3)	0.001	0.005	0.003	0.006

Thickness and density effects

Parameter	EPS	Binder only	Binder + 50% Biochar A	Binder + 33% Biochar B
Thickness [mm]	25.4	5.1	6.7	6.2
R-value [(K · m ²)/W]	3.50	0.49	0.94	1.03
k [W/(m K)]	0.039	0.059	0.041	0.035
Density [g/cm ³]	0.012	0.465	0.360	0.295

Biochar composites achieve thermal conductivity comparable to EPS, but with 25 to 30 times greater density. RIT

Scanning electron microscopy (SEM) @ ~50X

Binder + Biochar B @51x

SEM @ 200X

RIT

SEM @ 1000X

RIT

Binder + Biochar B

Binder + Biochar A

Binder only

- Sustainable thermal packaging materials were developed by combining biochar with an organic binder.
- Composites based on two types of biochar with widely varying properties yielded thermal conductivities comparable to expanded polystyrene, with densities 25 to 30 times greater than EPS.
- Scanning electron microscopy images highlight morphological features that may help explain the low thermal conductivity values achieved.
- More research is needed to understand the trade-offs among thermal conductivity, density and mechanical properties.
- Biochar composites show promise as a pathway to displacing EPS, but much lower cost targets must be met for full-scale production.

Sustainability

Madan M. Manipati mxm5039@rit.edu

3 point bend test

Expanded Polystyrene (EPS)

Binder + Biochar B @ 66.63% : 33.37%

3 point bend test

Binder + Biochar A @ 50% : 50% 25.00 Specimen : Specimen 2 20.00 —— Specimen 3 15.00 Force [N] 10.00 5.00 0.00 9070340 8 ~ 9 65 74 83 2 ~ 0 ω 4 e N 80 40 ര 0 0 0 T 0 **N** 0 ファ ര ത ത 0 0

Displacement [mm]