US Biochar 2018 Wilmington DE, USA August 21, 2018

Factors affecting sorption of halogenated phenols to polymer/biomass-derived biochar: Effect of pH, hydrophobicity, and deprotonation

Seok-Young Oh^{*} and Yong-Deuk Seo Department of Civil and Environmental Engineering University of Ulsan, South Korea

Biochar production in South Korea

 Since 2013, approximately 15% of biosolids (~1,000 ton/d) from WWTFs have been disposed via pyrolysis/carbonization.

- Biosolid biochar is being used for supplementary fuels for local power plants.
- One commercial biochar is available from Kyungdong Agro. Co.

Polymer wastes: plastics

- Used in everyday life
- Global plastic production: 264 million tons (2010)
- In South Korea,
- Plastic/polymer wastes generation: 6000 tons/day (2014)
- About 60% recycling
- Resistant to biodegradation
- Final disposal: incineration and landfilling
- Pyrolysis of plastic wastes: pyrolysis oil and gas

Co-pyrolysis of polymer and biomass wastes

- Significantly improves the quality of bio-oil due to the synergistic effect of the high content of carbon and hydrogen in the polymers.
- Increases yield of bio-oil and higher heating values.
- Reduces acidity, density, and oxygen content.
- Studies on char produced from co-pyrolysis of biomass and polymers were limited.

Chars co-pyrolyzed with biomass and polymer wastes

(Oh and Seo, 2016, BT; Oh et al., 2018, JEQ)

Co-pyrolysis of polymer and biomass wastes

• Co-pyrolysis of polymer and biomass wastes improved the properties of biochar.

• Increasing carbon content and the development of surface functional groups significantly enhanced the sorption capacity of NACs and Pb on polymer/rice straw (RS)-derived biochar.

Can ionizable aromatic compounds be sorbed to polymer/RS-derived biohars more effectively?

Hypothesis

• Polymer/RS-derived biochar may promote the sorption capacity of halogenated phenols through various sorption mechanisms and that some factors may significantly affect the sorption of halogenated phenols onto polymer/RS-derived biochar.

Objectives

- To synthesize polymer/RS-derived biochar.
- To investigate the sorption of halogenated phenols onto polymer/RS-derived biochar.
- To examine affecting factors such as pyrolysis temperature, number of chlorinated functional groups, equilibrium pH, competition among halogenated phenols, and dissolved metals.

Biochar production

- Biomass: rice straw (RS)
- Polymers: polypropylene (PP), polyethylene (PE), polystyrene (PS)
- Mixing ratio of polymer:RS = 40:60 v/v

Rice straw

Co-pyrolysis (550-900 °C, 4 h, under N_2 at 1000 cc/min)

Biochar

Batch experiments

1) Halogenated phenols: TCP/DCP/DFP/DBP/4CP/2CP/phenol 2) Initial conc.: 25-800 mg/L 3) pH 7.4/4.7 (HEPES/acetate)

Control without sorbents

- At 25 °C
- 180 rpm shaking
- Duplicate sampling
- Equilibrium time: 24 h
- Filtration: 0.025-µm

cellulose membrane filter

- Chemical analysis: HPLC (Ultimate[®]3000, Dionex)

Properties of polymer/RS-derived biochar

Polymer Type	Polymer Content Before Pyrolysis (v.%)	Pyrolysis Temp. (°C)	рН	BET SA (m²/g)	CEC (cmol/kg)	PZC	Elemental Contents (%)			
							С	Н	0	Ν
-	0	550	9.12	16.4	77.5	8.4	55.8	2.88	13.1	2.02
PE	40	550	10.4	25.7	260	10.4	57.7	2.13	6.64	0.52
PS	40	550	10.5	20.0	191	9.8	58.1	1.56	4.71	0.54
РР	40	550	11.1	27.5	321	9.7	57.9	2.10	7.43	0.54
	40	700	11.1	33.6	99.9	9.8	56.8	1.55	6.46	0.40
	40	900	11.4	34.8	98.9	10.0	56.6	0.75	5.14	0.37

Properties of halogenated phenols

Name	Chemical Formula	Molecular Weight	logK _{ow}	pK _a	Water Solubility (mg/L)
2,4,6-trichlorophenol (TCP)	C ₆ H ₃ Cl ₃ O	197.45	3.69	6.23	800
2,4-dichlorophenol (DCP)	C ₆ H ₄ Cl ₂ O	163.0	3.20	7.90	4500
2-chlorophenol (2CP)	C ₆ H ₅ ClO	128.56	2.15	8.48	28500
4-chlorophenol (4CP)	C ₆ H ₅ ClO	128.56	2.39	9.41	24000
2,4-dibromophenol (DBP)	C ₆ H ₄ Br ₂ O	251.9	3.22	7.79	1900
2,4-difluorophenol (DFP)	C ₆ H ₄ F ₂ O	130.09	1.91	8.72	8109
Phenol	C ₆ H ₆ O	94.11	1.46	9.95	82800

Sorption to polymer/RS-derived biochar:

Types of halogenated functional groups

C_e (mg/L)

Sorption to polymer/RS-derived biochar:

Numbers of chlorinated functional groups

Effect of pyrolysis temperature: PP/RS-derived biochar

Effect of pH: PP/RS-derived biochar

Correlation between the maximum sorption capacity (mg/g) and pH-modified octanol-water partition coefficient (logK_{ow}(pH)) or the degree of deprotonation (pK_a-pH).

Effect of competition:

PP/RS-derived biochar

Effect of dissolved Zn²⁺ (~50 mg/L)

Schemes on sorption of halogenated phenols to polymer/RS-derived biochar

Conclusions

• Polymer/RS-derived biochar could significantly enhance the sorption of halogenated phenols according to polymer residues, net surface charge, and deprotonation of compounds.

• Increasing the pyrolysis temperature from 550 to 700 and 900°C was not advantageous due to compensation between the removal of polymer residues and surface functional groups and increasing π - π EDA interactions.

• Solution pH was an important factor in controlling the hydrophobicity and deprotonation of compounds.

Conclusions

• Competition with other halogenated phenols and dissolved cations implied that similar sorption mechanisms existed and that surface complexation and EDA interactions were involved in sorption onto polymer/RS-derived biochar.

• Co-disposal of thermoplastic and biomass wastes through pyrolysis may be an effective option to produce highperformance upgraded biochar as a sorbent for various types of contaminants.

Acknowledgments

- National Research Foundation of Korea Grant (2016R1D1A1B03931048)
- BK21 Plus (2013~)

Any questions?

Application of biochar in urban farming [Gwangju (Gyunggi-do), South Korea]

