

Electron Storage Capacities (ESC) of Biochar and Other Black Carbon Materials

Danhui Xin and Pei C. Chiu

University of Delaware Department of Civil and Environmental Engineering

> BIOCHAR 2018 Wilmington, August 22, 2018

Biochar as a Sorbent

Metal Ions

□ Hg, Pb, Cd, Cu, etc.

Cation Exchange Capacity

Organic Compounds

 Hydrophobic organic compounds e.g., herbicides, halocarbons, pharmaceuticals, etc.

BET Surface Area

Biochar as a Rechargeable Battery

Oxidized biochar

Reduced biochar

Electron Storage Capacity of Biochar

- □ The ESC of biochar is a new property, first demonstrated by Michael Sander of ETH Zurich in 2014.^[1]
- Chiu's group showed that Soil Reef biochar (SRB) can serve as a reversible electron donor and acceptor for *G. metallireducens* to reduce nitrate and oxidize acetate, respectively. The ESC of SRB accessible to *G. metallireducens* was ~0.86 mmol/g (2016).^[2]
- In field pilot-scale bioretention cells, Imhoff's group showed SRB significantly and consistently enhanced nitrate removal from stormwater (2018).^[3]

Klüepfel, L.; Keiluweit, M.; Kleber, M.; Sander, M., Redox properties of plant biomass-derived black carbon (Biochar). *Environ Sci Technol* 2014, 48(10), 5601-5611
Saquing, J. M.; Yu, Y. H.; Chiu, P. C., Wood-derived black carbon (biochar) as a microbial electron donor and acceptor. *Environ Sci Tech Lett* 2016, 3(2), 62-66.
Tian, J.; Jin, J.; Chiu, P. C.; Cha, D. K.; Guo, M., Imhoff, P. T., A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res, In review.

Objectives

To develop new methods to assess ESC and redox reversibility of biochar

Experimental Design

Experimental Setup

EAC Measurement with Ti(III) Citrate

Reduction of air-oxidized biochar by Ti(III) citrate

Reversibility of Biochar ESC

Arrows (\downarrow) indicate where air oxidation of SRB was performed for 72 hours.

New methods for assessing ESC and redox reversibility of biochar

Implications

- □ A new method for assessing ESC and redox reversibility of black carbon material was developed.
- □ Like BET surface area, ESC may be a property that is common to biochar and other black carbon materials.
- ESC should be a design parameter for biochar applications that involve redox transformation.

Enhanced NO₃ - Removal from Stormwater through Biochar and ZVI Addition

Tian, J.; Jin, J.; Chiu, P. C.; Cha, D. K.; Guo, M., Imhoff, P. T., A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater. Water Res, In review.

Poster 26: ESC of Biochar and Other Black Carbon Materials

The ESC of Different Black Carbons

A novel application of biochar's ESC

The effectiveness of Ag/SRB

Acknowledgements

Minghan Xian

Leslie Ope

Camila Babativa

Keck CAAM @ UD

California-based company that produces biochar through a proprietary technology

Thank you for your attention!

Questions?

Pei C. Chiu, pei@udel.edu Danhui Xin, danhui@udel.edu