

Activation Of Biochar Obtained From Slow Pyrolysis Of The Macauba Coconut Residue For Removing Uranium From Aqueous Solutions

Guilhen, S. N.; Ortiz^{*}, N.; Izidoro, J. C.; Fungaro, D. A.

Chemistry and Environment Center Nuclear and Energy Research Institute - IPEN National Nuclear Energy Commission - CNEN São Paulo – Brazil *nortiz@ipen.br

- Various activities in the nuclear industry (mining, research, fuel cycle, nuclear medicine) generate <u>aqueous wastes containing radionuclides</u>;
- Reduce the release of radioactive and toxic substances in the environment requires constant improvement of processes and technologies for treatment and conditioning of these wastes;
- Treatment of liquid radioactive wastes involves the application of several steps, such as filtration, precipitation, sorption, ion exchange, evaporation and/or membrane separation;
- <u>It must meet the requirements</u> for both the release of decontaminated effluents into the environment and the conditioning of waste concentrates for permanent disposal;

- Natural uranium is a <u>mixture of 3 isotopes ²³⁴U (0,005%)</u>, ²³⁵U (0,711%) e ²³⁸U (99,284%), among which the most abundant is the U-238, with a halflife of 4.5 billion years;
- Chemically, they behave the same way;
- However, the U isotopes <u>decay through alfa-particle emission</u> in order to reach stability;
- <u>Alfa particles are highly ionizing</u> (cause damage to living tissues), although little penetrating;
- When ingested or inhaled, uranium particles can irradiate a person from the inside;

- The <u>nuclear fuel cycle involves a series of steps in which several uranium</u> <u>compounds are generated</u>;
- IPEN's research reactor uses a 19.75% enriched uranium fuel of uranium silicide U₃Si₂;
- One of the steps of the nuclear fuel cycle generates an aqueous waste containing uranium (uranium tretrafluoride effluent, UF₄) at concentrations that are approximately 400 x higher than the maximum allowed limit;
- Standards in Brazil (regulated by CNEN) establish a maximum of 0.2 mg of U/L (200 ppb) in the wastewater, considering an enrichment degree of 19.75%.

- A preliminary treatment step is performed through precipitation of U as sodium or ammonium diuranate;
- However, this process is not 100% effective and reminiscent ions remain in the solution – usually at concentrations still above the maximum established limits;
- Treatment of low concentrated solutions require a more refined technique Adsorption is a simple and cost-effective technique, with the ability to specifically remove undesired substances from solutions;
- Several adsorbent materials are available: Biochars can be a good adsorbents for heavy metals because of their porous structure, charged surface, and surface functional groups. Moreover, they can be produced from natural renewable feedstocks.

Macauba Palm Tree (*Acrocomia aculeta*)

Palm tree of high prevalence in Brazil, with potential to be produced in so-called silvopastoral systems without land use change and in na ecomically and socially sustainable way.

It has great economic potential. Its fruits/coconuts can be processed into plant oil destined for food and cosmetic industries as well as for the production of biodielsel and biokerosene; and animal fodder (press cake).

Endocarp = approx. 33% of the whole fruit

Biochar production

Fixed carbon yield

Adsorption experiments

Physical Activation

Physical activation:
gaseification process at 850°C
using CO₂ atmosphere.

BC350: non-activated biochar

BC350-A: activated biochar

Parameters	ASE	Vp	IBET	I _{BET}
BC	(m² g⁻¹)	(cm ³ g ⁻¹)	(Å)	(nm)
BC350	0,8320	0,001295	383,181	38,31
BC350-A	643,12	0,298	30,45	3,04
ASE = specific superficial area; V_p = pore volume; I_{BET} = pore size				

Results - Activation effect

pH = 3; Ci = 1-200 mg/L Dose = 10 g/L; 120 rpm; 25°C

Adsorbent	qmax	References
Chemically and thermally	20	Tsuruta, 2002
modified bentonite	29	
Conventional activated	45	Morsy &
carbon	40	Hussein, 2011
E. canadensis	89	Yi et al, 2016
Thermally treated	~~	Zhang et al.,
carbono microspheres	92	2013

Results – Adsorption Isotherms

Model	R2	ARE	SSE	MPSD	HYBRID	SAE	X2
Langmuir	0,972	6,10E+01	1,73E+07	2,70E+03	7,27E+04	1,24E+04	1,76E+05
Freundlich	0,968	8,91E+01	1,08E+07	2,40E+03	5,78E+04	1,03E+04	7,28E+03
Toth	0,968	7,47E+01	1,08E+07	2,51E+03	6,32E+04	1,03E+04	7,26E+03
R-P	0,974	3,99E+01	1,15E+07	2,32E+03	5,39E+04	1,04E+04	1,02E+04

Real case application

	Concentration (mg L ⁻¹)
UF ₄ effluent initially generated	76.3
UF ₄ effluent after preliminary treatment	5.1
UF ₄ effluent after treatment using BC350-A	0.107
Maximum allowable limit (CNEN-NN-8.01)	0.217

 Treating the uranium-contaminated aqueous waste with the activated macauba biochar was successful.

Conclusions

- Non-activated biochar (BC350) achieved a removal of 80.1% for U(VI);
- Physical activation greatly improved BC350's adsorption capacity, having achieved an adsorption capacity of 489 mg g⁻¹ for U(VI);
- Compared to other adsorbents in the literature, macauba's biochar presented a better performance;
- Experimental data showed a better fit to the Redlich-Peterson model, indicating a hybrid adsorption mechanism;
- Macauba biochar proved to be a suitable adsorbent for the removal of uranium: a removal above 99% was achieved when BC350-A was used and the discharge levels were achieved;
- Real waste application successfully met the standards.

Special thanks to:

