IOWA STATE UNIVERSITY Bioeconomy Institute

Phosphate sorption onto modified biochar surface

Biochar & Bioenergy 2019 Santanu Bakshi*, Ryan G. Smith and Robert C. Brown July 1, 2019

Innovations exploration

- Produce high alkalinity/porosity (HAP) biochar through autothermal pyrolysis of herbaceous feedstocks
- >Assess the utility of HAP biochar to improve various performances
 - biogas quality from anaerobic digestion (AD)
 - Iivestock odor control
 - use of biochar + digestate and biochar + composted manure in land application for recycling nutrients

Hypotheses of this study

 Modified biochars can be produced by alterations in biochar physical and chemical properties

 Co-composting of modified biochars with animal manures can retain phosphate

 Application of phosphate retained biochar can be used as a highly beneficial soil amendment to improve soil health

Pyrolysis process of Fe-impregnation

Types of biochar and chemical properties

Biochar	Ultimate analysis (%)					Proximate analysis (%)				pH (1:15 solid
	С	Ν	Н	S	H/C (mol/ mol)	moisture	VM	FC	ash	· watery
CS-control	54.76	1.02	2.093	0.06	0.274	4.51	23.95	37.15	34.4	9.2 (0.05)
CS-control-oxidized*	48.56	1.26	1.983	0.09	0.245	2.34	26.18	32.58	38.9	8.8 (0.02)
CS-FeSO ₄	36.42	1.21	1.63	5.03	0.268	2.24	33.98	23.98	39.8	5.4 (0.07)
CS-FeSO ₄₋ oxidized	27.85	1.42	0.97	6.017	0.209	1.42	34.91	14.35	49.5	5.1 (0.04)

*Xiao and Pignatello, 2016. Effects of post-pyrolysis air oxidation of biomass chars on adsorption of neutral and ionizable compounds. Environ. Sci. Technol. 50. 6276-6283

Mass lost during PPAO: CS-control: 11.2%, CS w/FeSO₄: 14.8%

Zero point charge (ZPC)

(0.1 g biochar + 20 mL 0.1 M NaCl; adjusted to pH 2-10 range with HCl or NaOH; shaking for 24 hrs)

- Positively charged surface for control biochar @ pH 2-8
- Positively charged surface for Fe impregnated biochar @ pH 2-4

FTIR analysis

7

XRD analysis

Sorption isotherm: control biochar

(sorption equilibrium with 0-400 mg L⁻¹ of pH 8.0 PO₄³⁻ solution for 48 hrs; solid loading rate 5 g/L)

Equilibrium pH Unoxidized: 7.64-8.33 Oxidized: 7.39-7.98 Equilibrium pH Unoxidized: 8.2-8.73 Oxidized: 8.1-8.5

9

Sorption isotherm: FeSO₄ PT biochar

(sorption equilibrium with 0-400 mg L⁻¹ of pH 8.0 PO₄³⁻ solution for 48 hrs; solid loading rate 5 g/L)

Equilibrium pH Unoxidized: 7.04-7.62 Oxidized: 6.9-7.56 Equilibrium pH Unoxidized: 5.28-5.64 Oxidized: 4.93-5.38

10

Desorption isotherm: control biochar

(After sorption, desorption step was done for 48 hrs each with de-ionized water for 3 times; solid loading rate 5 g/L)

CS-control-oxidized

Desorption isotherm: FeSO₄ PT biochar

(After sorption, desorption step was done for 48 hrs each with de-ionized water for 3 times; solid loading rate 5 g/L)

Unfortunately, no new phosphate mineral of Fe was found by XRD

- BE Fe 2p suggests the "ferric" state
- BE P 2p suggests the "phosphate" state

FeSO4-biochar-phosphate_ph8 area-1 1500x bse

CK series OK series

FeSO4-biochar-phosphate_no-pH area-1 1500x bse

25µm

10µm

SEM-EDS analyses partially suggest the dominant form of phosphate is $H_2PO_4^-$ when the pH was unbuffered to form $Fe(H_2PO_4)_3$

FeSO4-biochar-phosphate_ph8 area-1b 5000x bse

10µm

22

SEM-EDS analyses partially suggest the dominant form of phosphate is HPO₄²⁻ when the pH was buffered to 8 to form Fe₂(HPO₄)₃

- □ Fe-impregnation caused modifications on biochar surface
- □ Sorption of phosphate onto biochar surface depends on solution pH
- □ Phosphate can be slowly desorbed from biochar surface
- □ Surface complexation through ligand exchange is the dominant mechanism

Future research

- ✤ Reversibility of phosphate sorption in presence of competing ions
- Evaluation of plant available P
- ✤ Greenhouse study