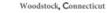


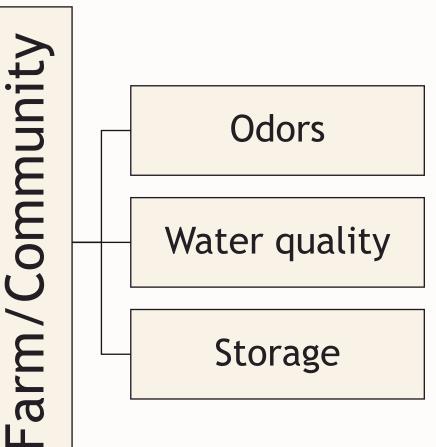
Energy balance of pyrolyzing dairy manure

Lucinda Li, Rob Aldi, Johannes Lehmann Cornell University, School of Integrative Plant Sciences

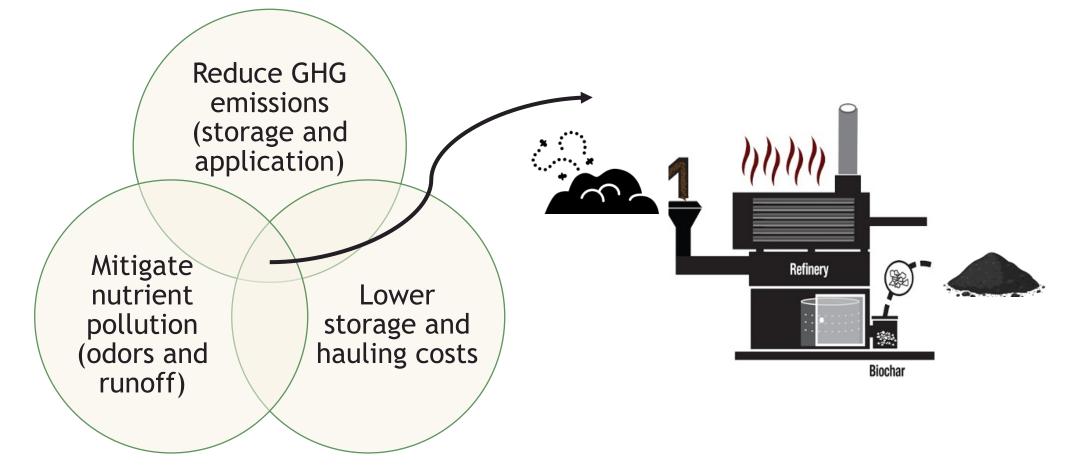


Union Springs, New York

Project partner

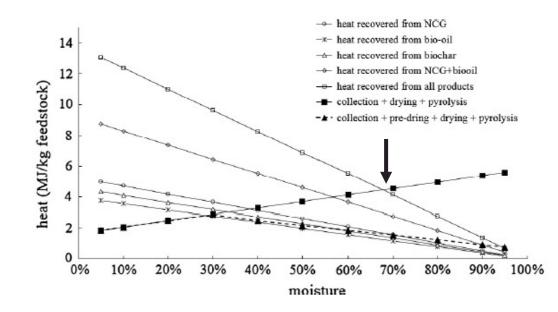

Ithaca, New York

- Spruce Haven
- NYSERDA
- Biomass Controls
- Cuff Farm Services


There are many challenges with managing manure

Herd size	Number of farms	Manure Spread (m ³ farm ⁻¹ yr ⁻¹)	Cost for spreading (\$ farm ⁻¹ yr ⁻¹)			
1-9	844	44 to 396	\$399 to \$3,588			
10-19	364	440 to 836	\$3,987 to \$7,576			
20-49	1,131	880 to 2,156	\$7,974 to \$19,537			
50-99	1,295	2,200 to 4,356	\$19,936 to \$39,473			
100-199	453	4,400 to 8,756	\$39,872 to \$79,345			
200-499	278	8,800 to 221,956	\$79,744 to \$198,961			
500-999	141	22,000 to 43,956	\$199,360 to \$398,321			
1,000-2,499	119	44,000 to 109,956	\$398,720 to \$996,401			
2,500-4,999	22	110,000 to 219,956	\$996,800 to \$1,993,201			
> 5,000	1	220,000 +	\$1,993,600 +			

Pyrolyzing manure can address many challenges of manure management



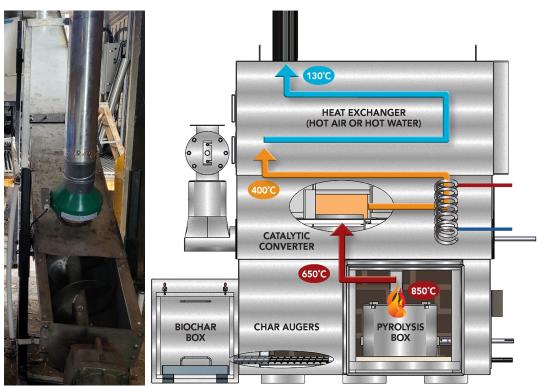
Our objective is to quantify the environmental and socioeconomic benefits of on-farm pyrolysis

- Perform an energy balance for drying and pyrolyzing manure
 - Quantify net energy
- Quantify environmental benefits
 - Reduction in GHG emissions from transport, storage, and application
 - Reduction in nutrient runoff and improvements in nutrient use efficiency
- Quantify socioeconomic benefits
 - Reduction in odors and easier storage options
 - Carbon crediting from manure biochar

Previous work suggests that there is sufficient energy in manure to pre-dry it

Fig. 6. Relationship between energy consumption and heat recovered during wet human manure pyrolytic process.

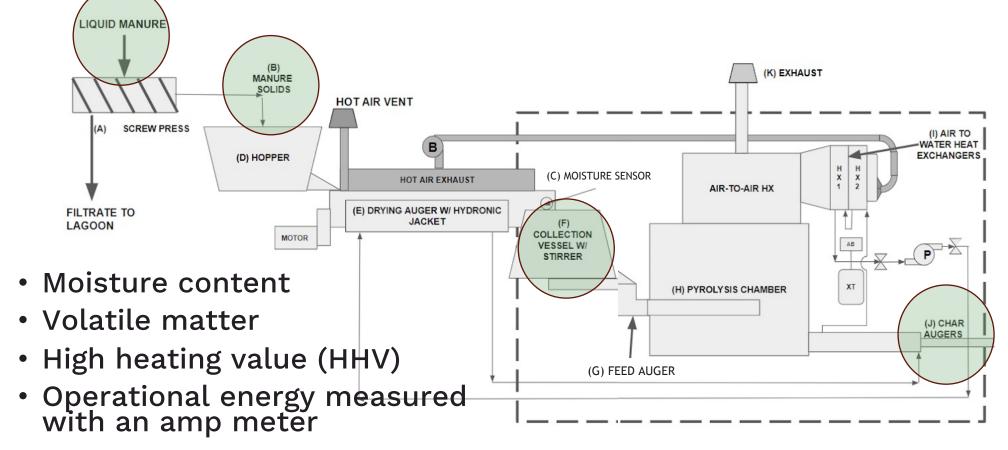
We performed an energy balance for an on-farm, integrated pre-drying pyrolysis system


Dairy mo

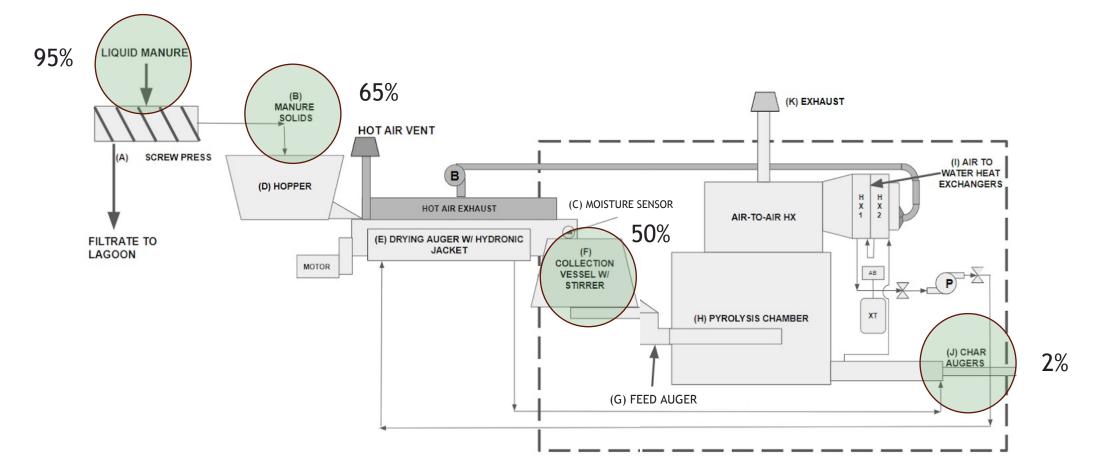
and pump

Pre-project management

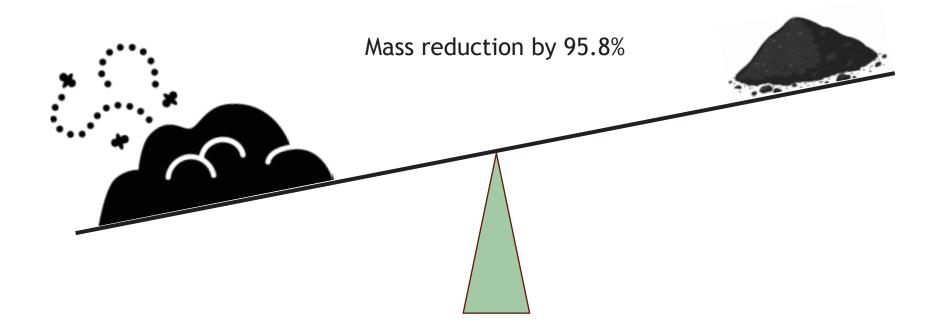
The pyrolysis system was integrated with a hydronic drying system



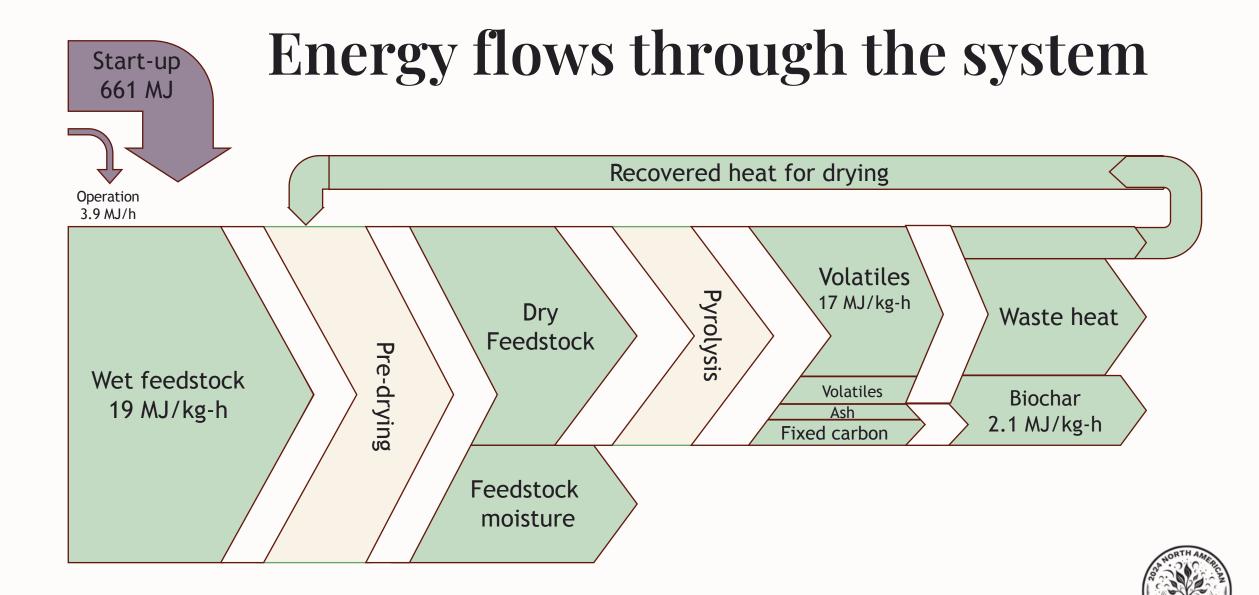
Hydronic drying system


- A dry feedstock is combusted to bring the pyrolysis box to the target temperature.
- Heat is transferred to a hydronic drying system via the heat exchanger.
- The heated hydronic system, which circulates hot water in a jacket around the feedstock, is used to dry incoming manure solids.
- Dried manure solids are fed into the pyrolysis box.
- The feedstock is rapidly converted to biochar.

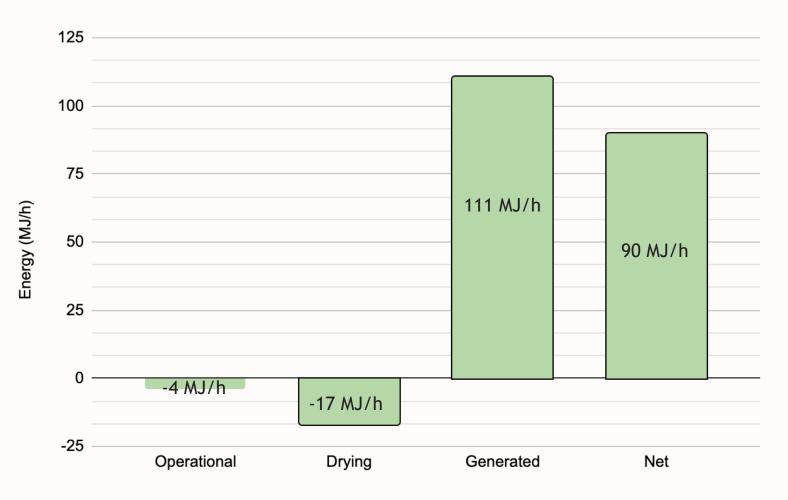
Samples were collected throughout the system



We measured the moisture content throughout the system


USBI • BIOCHARCONFERENCE.COM • FEB. 12-15, 2024

Pyrolysis reduces the mass and volume and manure


Volume reduction by 80.4%

USBI • BIOCHARCONFERENCE.COM • FEB. 12–15, 2024

There is sufficient energy to pre-dry the manure solids in an integrated system

USBI • BIOCHARCONFERENCE.COM • FEB. 12-15, 2024

Next steps

- Upgrade the heat recovery system
 - Generate energy for the farm to heat manure before going into digester
- Determine the threshold moisture content for energyneutral pyrolysis
- Test different local feedstocks
 - Model how an on-farm pyrolysis system can be used to serve local waste generators
- Conduct field trials with the manure biochar and evaluate its nutrient use efficiency

Conclusions

- Pyrolysis generates sufficient energy to pre-dry manure solids in an integrated drying system.
- Additional energy generated can be recovered from the system and redirected for other farm needs.
- On-farm pyrolysis can reduce mass and volume of dairy manure to lower storage and hauling costs.

Lucinda Li ll555@cornell.edu

USBI • BIOCHARCONFERENCE.COM • FEB. 12-15, 2024

Appendix

- Spruce haven # of cows, kiln residence time, Biomass Controls design parameters
 - Biomass Controls 200 cows, handle 50 kg/hr of wet mass input and 13 kg/h production
 - Kiln residence time of 30-115 mins depending on operation
 - Spruce Haven has 2000 cows, 3700 including calves and heifers, 2600 cow equivalent of manure
- Ash content and volatile content values + other BC characteristics according to IBI
 - 8% for manure solids and 26% for BC ash contents
 - 79% volatile for manure and 26% for BC volatiles
- Cost analysis
 - Spruce Haven can save ~\$20,000 per 200 cows as compared to conventional manure management vs pyrolysis only for storing, hauling, spreading and BC application (does not include environmental benefits)
 - For 2600 cows of manure, as much as \$2.5 million in savings
- In addition, energy production of anaerobic digestion increases by 42% when coupled with pyrolysis
- biochar can be applied as an amendment to composts and reduce about 50% nitrogen losses (Steiner et al., 2010; Awasthi et al., 2016) which constitutes an energy savings of about 0.9 MWh/ton of crop residue (at application rates of 20% w/w for 1 ton of dry compost with 2% N; 0.0091 MWh/kg N from Zhang et al., 2013). Alternatively, the biochar can be added to soil and reduce nitrogen losses by 82% (Guerena et al., 2013) which constitutes an energy saving from saved nitrogen fertilizer production equivalent to 0.75 MWh/t crop residue at application rates of 5 ton/ha once over a 10-year period
- New York State currently has 4000 dairy farms (Cuomo and Ball, 2017), 500 of which are dairy farms falling in the concentrated animal feeding operation categories of more than 300 or 700 cows.

	Source	Distance (km)	Time (min)	# Loads Spread	Total Costs (per load)	Total Annual Cost
Appendix	Dairy experts	6 to 32	n/a	n/a	n/a	n/a
rppendix	Howland & Karszes	10 to 32	23 to 53	72 to 923	\$36 to \$116	\$2,592 to \$107,068

- One cow on a NY dairy farm produces around 8,000 gallons of "manure" per year (this includes feces and urine as well as waste water, bedding material, sprinkler water, washdown water and other grey water).
- A study published in 2014¹ suggests that an average dairy farm spreads around 44,300 liters (or 11,700 gallons) of manure per cow per year.
- The daily distance travelled to transport manure varies depending on farm size, but ranges from about 2 to 16 kilometers one-way (Table 2).
- The average annual cost for manure hauling and spreading (including equipment, labor and fuel) is more than \$200,000 per farm per year for farms with more than 500 cows¹. Additionally, storage poses a cost to the farms.

Herd size	Number of farms	Manure Spread (m ³ farm ⁻¹ yr ⁻¹)	Cost for spreading (\$ farm ⁻¹ yr ⁻¹)		
1-9	844	44 to 396	\$399 to \$3,588		
10-19	364	440 to 836	\$3,987 to \$7,576		
20-49	1,131	880 to 2,156	\$7,974 to \$19,537		
50-99	1,295	2,200 to 4,356	\$19,936 to \$39,473		
100-199	453	4,400 to 8,756	\$39,872 to \$79,345		
200-499	278	8,800 to 221,956	\$79,744 to \$198,961		
500-999	141	22,000 to 43,956	\$199,360 to \$398,321		
1,000-2,499	119	44,000 to 109,956	\$398,720 to \$996,401		
2,500-4,999	22	110,000 to 219,956	\$996,800 to \$1,993,201		
> 5,000	1	220,000 +	\$1,993,600 +		

Sample ID:			Manure Bioch	nar 061319					
Lab ID. Number:			9060926-01						
	Int	ternationa	al BioChar In	itiative (IBI) I	aboratory	Tests for Certificati	on Progra	m	
		Dry Basis U	nless Stated:	Range	Units	Method			
Moisture (time of analysis)			67.2			% wet wt.	ASTM D1762-84 (105c)		
Bulk Density			15.7			lb/cu ft			
Organic Carbon			74.5			% of total dry mass	Dry Combust-ASTM D 4373		
Hydrogen/Carbon (H:C)			0.43 0.7 Max		Molar Ratio	H dry combustion/C(above)			
Total Ash			11.9		% of total dry mass	ASTM D-1762-84			
Total Nitroger	I		0.97		% of total dry mass	Dry Combustion			
pH value			9.66			units	4.11USCC:dil. Rajkovich		
Electrical Con	ductivity (EC20 w	/w)	1.871		dS/m	4.10USCC:dil. Rajkovich			
Liming (neut.	Value as-CaCO3)	13.4		%CaCO3	AOAC 955.01			
Carbonates (a	is-CaCO3)		5.0		%CaCO3	ASTM D 4373			
Butane Act.				2.1		g/100g dry	ASTM D 5742-95		
Surface Area	Correlation			200		m2/g dry	G		
All units mg/kg dry unless stated:			Range of	Reporting		Particle Size Distribu	ition		
	R	esults	Max. Levels	Limit (ppm)	Method		Results	Units	Method
Arsenic	(As)	ND	13 to 100	0.38	J	< 0.5mm	35	5.3 percent	F
Cadmium	(Cd)	ND	1.4 to 39	0.15	J	0.5-1mm	22	2.8 percent	F
Chromium	(Cr)	54.1	93 to 1200	0.38	J	1-2mm	22	2.0 percent	F
Cobalt	(Co)	3.1	34 to 100	0.38	J	2-4mm	18	3.1 percent	F
Copper	(Cu)	152	143 to 6000	0.38	J	4-8mm		1.8 percent	F
Lead	(Pb)	0.7	121 to 300	0.15	J	8-16mm	(0.0 percent	F
Molybdenum	(Mo)	1.4	5 to 75	0.38	J	16-25mm	(0.0 percent	F
Mercury	(Hg)	ND	1 to 17	0.000	EPA 7471	25-50mm	(0.0 percent	F
Nickel	(Ni)	80.1	47 to 420	0.38	J	>50mm	(0.0 percent	F
Selenium	(Se)	ND	2 to 200	0.76	J	Basic Soil Enhancement Properties			
Zinc	(Zn)	60.0	416 to 7400	0.76	J	Total (K)	70	21 mg/kg	E
Boron	(B)	30.0	Declaration	3.78	TMECC	Total (P)	22	42 mg/kg	E
Chlorine	(CI)	2498	Declaration	20.0	TMECC	Ammonia (NH4-N)	21	l.2 mg/kg	A
Sodium	(Na)	1762	Declaration	377.7	Е	Nitrate (NO3-N)	().7 mg/kg	A
Iron	(Fe)	3833	Declaration	18.9	Е	Organic (Org-N)	96	59 mg/kg	Calc.
Manganese	(Mn)	720	Declaration	0.38	J	Volatile Matter	18	3.8 percent dw	D
* "ND" stands	for "not detected"	" which m	eans the resu	It is below the	e reporting I	imit.			
Method A	Rayment & Higgi	nson	G	Butane Activ	ity Surface	Area Correlation Bas	ed on McLa	aughlin, Shield	s, Jagiello,
D ASTM D1762-84 & Thiele's 2012 paper: Analytical Options for Biochar Adsorption and Surface Area									
E EPA3050B/EPA 6010 J EPA3050B/EPA 6020									
F	ASTM D 2862 G	ranular							

