

USBI • BIOCHARCONFERENCE.COM • FEB. 12-15, 2024

The Next Level: Scaling the biochar market by educating carbon-smart customers

Fernando Migliassi
Co-Founder & CEO
The Biochar Impact Company

The Next Level: Scaling the biochar market by educating carbon-smart customers

Fernando Migliassi Co-Founder & CEO

Our Team

Fernando Migliassi

Jeff Wallin
Co-Founder & Chief Growth Officer

Doug Guyer
Chief Impact Officer

Bob Cirino Biochar Advisor

Our Biochar Roots

Project "Catalyst"

of 5 State economic initiatives Ag is 1 of Top-5

\$500M County Ag economic value

350K TONS Ag industry residual "waste"

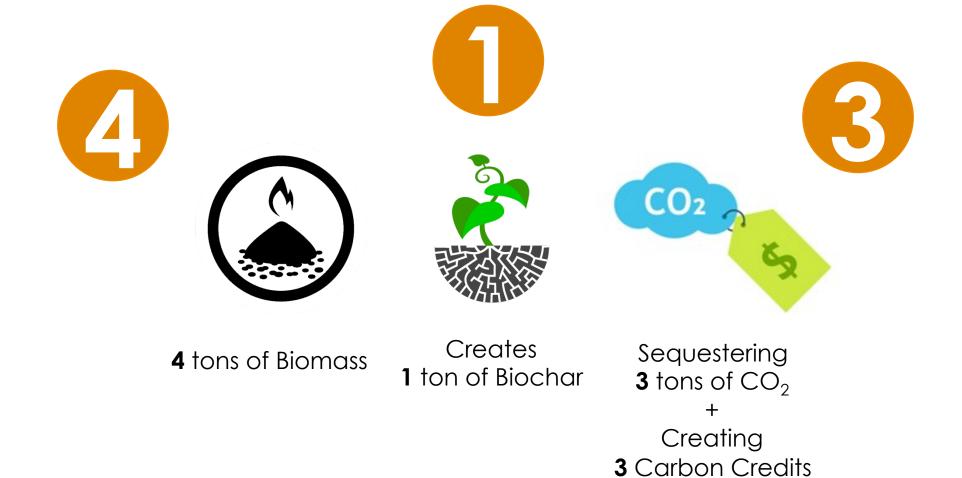
10:1 Up-cycled Compost : Biochar blends

45K ACRES County-wide Ag acres

1,100 FARMS County-wide farms

\$ Milions Revenue + Grants \$ → Conservation Coupon

The Biochar Paradox


Industrial agriculture has prioritized predictability, standardization and financial returns at the cost of depleting soils

What the biochar industry has been challenged by, in order to scale, has been greater predictability, standardization and financial returns

Being all things to all people

The Kiss of Death

Megaton to Gigaton Impact Creation

Lab Analysis

International BioChar Initiative (IBI) Laboratory Tests for Certification Program

	Dry Basis Unless Stated: Range	Units	Method		
Moisture (time of analysis)	78.0	% wet wt.	ASTM D1762-84 (105c)		
Bulk Density	8.5	lb/cu ft			
Organic Carbon	80.5	% of total dry mass	Dry Combust-ASTM D 4373		
Hydrogen/Carbon (H:C)	0.23 0.7 Max	Molar Ratio	H dry combustion/C(above)		
Total Ash	19.0	% of total dry mass	ASTM D-1762-84		
Total Nitrogen	0.73	% of total dry mass	Dry Combustion		
pH value	9.13	units	4.11USCC:dil. Rajkovich		
Electrical Conductivity (EC20 w/w)	0.471	dS/m	4.10USCC:dil. Rajkovich		
Liming (neut. Value as-CaCO3)	7.9	%CaCO3	AOAC 955.01		
Carbonates (as-CaCO3)	2.3	%CaCO3	ASTM D 4373		
Butane Act.	4.7	g/100g dry	ASTM D 5742-95		
Surface Area Correlation	283	m2/g dry	G		

Odiface Area	Correlation			200		mz/g dry	0		
All units mg/k	g dry unless sta	ated:	Range of	Reporting		Particle Size Distribu	ıtion		
		Results	Max. Levels	Limit (ppm)	Method		Results	Units	Method
Arsenic	(As)	ND	13 to 100	0.49	J	< 0.5mm	16.9	percent	F
Cadmium	(Cd)	ND	1.4 to 39	0.20	J	0.5-1mm	4.0	percent	F
Chromium	(Cr)	21.9	93 to 1200	0.49	J	1-2mm	15.2	percent	F
Cobalt	(Co)	1.1	34 to 100	0.49	J	2-4mm	46.6	percent	F
Copper	(Cu)	7.1	143 to 6000	0.49	J	4-8mm	13.6	percent	F
Lead	(Pb)	1.2	121 to 300	0.20	J	8-16mm	3.7	percent	F
Molybdenum	(Mo)	5.1	5 to 75	0.49	J	16-25mm	0.0	percent	F
Mercury	(Hg)	ND	1 to 17	0.001	EPA 7471	25-50mm	0.0	percent	F
Nickel	(Ni)	10.1	47 to 420	0.49	J	>50mm	0.0	percent	F
Selenium	(Se)	ND	2 to 200	0.98	J	Basic Soil Enhancer	nent Propertie	es	
Zinc	(Zn)	7.5	416 to 7400	0.98	J	Total (K)	4651	mg/kg	E
Boron	(B)	20.3	Declaration	4.9	TMECC	Total (P)	661	mg/kg	E
Chlorine	(CI)	1132	Declaration	20.0	TMECC	Ammonia (NH4-N)	61.9	mg/kg	Α
Sodium	(Na)	871	Declaration	489	E	Nitrate (NO3-N)	1.3	mg/kg	Α
Iron	(Fe)	1818	Declaration	24.5	E	Organic (Org-N)	7224	mg/kg	Calc.
Manganese	(Mn)	414	Declaration	0.49	J	Volatile Matter	10.1	percent dw	D

^{* &}quot;ND" stands for "not detected" which means the result is below the reporting limit.

Method A Rayment & Higginson

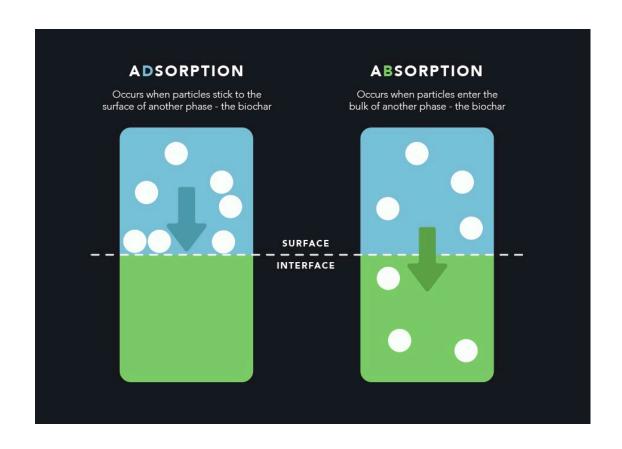
D ASTM D1762-84

E EPA3050B/EPA 6010 F ASTM D 2862 Granular

G Butane Activity Surface Area Correlation Based on McLaughlin, Shields, Jagiello, & Thiele's 2012 paper: Analytical Options for Biochar Adsorption and Surface Area

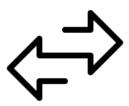
J EPA3050B/EPA 6020

The Keystone Property



Just as ecosystems have keystone species, **Adsorption is the "Keystone Property"** for confirming biochar quality

The reason adsorption is the best indicator of biochar quality is that it is virtually impossible to make a bad biochar and still have reasonable levels of adsorption present



Adsorption & Absorption

Holding & Exchange Capacity

As the **The Quality Indicator**,
Adsorption is a corollary to a host of other characteristics

- A soil's ability to hold water and retain and exchange nutrients are its most important qualities
- More adsorption, more performance
- Adsorptive capacity is one, effective expedient test that captures biochar's complexity and tells customers if their biochar works

Performance & Value Creation

Agricultural practices are shaped by adopting methods that reduce costs relative to the value of crops produced

- Biochar delivers value by correcting and compensating for soil deficiencies and improving soil properties to benefit the crop
- Biochar can reduce the need for other inputs like fertilizers and water
- Biochar is stable for decades

Carbon-Smart Agriculture

By furthering the market's understanding of biochar's key property of Adsorption – in addition to Dry Bulk Density and Application – as well as their combined economic and environmental value, our company uses well-supported science to improve the advancement of the industry with transparency and understanding

Adsorption Paper

Adsorption and Biochar Characterization

The following is a discussion on biochar characterization, with an emphasis on the role that Adsorption plays in the verification of biochar quality.

Quality, Quantity & Application → Biochar Value

Biochar has emerged as a versatile and cost-effective method to address many soil deficiencies and improve the performance of growing systems. As the understanding and utilization of biochar has matured, the scale of material being transacted has grown from samples made at home or bought through the mail to massive volumes, including bulk loads of material in tractor-trailer volumes. While one can check out and dispose of a sample size of material, when a 100-cubic yard trailer dumps your purchase on the ground you not only own it, but you have to be able to use it, as is, where it is. This discussion is aimed at explaining what information to consider before ordering and how to make sure you received what you contracted for and that is will benefit your crops.

www.Biocharlmpact.com

A thru Z

Increase Revenue

Reduce Costs

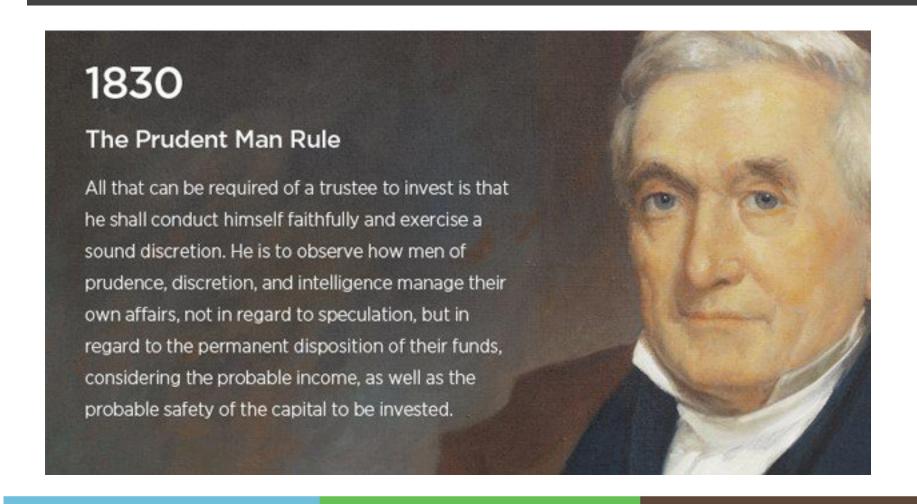
Build and Quantify Soil Carbon Inventories

\$ Yield Conversion from Inputs

Improve Resilience

ROI Return On Investment Return On Impact

Price | Performance | Duration


Opening The "Black Box"

Prudent Man Rule

Our Guiding Principle

As co-stewards of the land, water and air we prudently guide our clients to fully understand the quality of their biochar, re-configure their portfolio of assets (land, crops, etc.) and expenses (water, fertilizer, and other inputs), in order to measurably drive performance, predictability, and scalability

