

B

Large-Scale Biomass Gasification and the Co-Production of Biochar and Bioenergy

Bert Bennett, Ph.D. Senior Engineer / Principal Scientist

2024 North American Biochar Conference

CLIMATE SOLUTIONS

Need to Include Viable, Large-Scale Systems

One Potential Pathway: Biochar and CHP Systems

- **o** Co-Production of High Volumes of Biochar
- Maximize Co-Production of <u>Carbon-Neutral</u> Combined Heat and Power
 - Offset fossil fuel carbon by ...
 - Co-production of electrical power
 - Utilization of low-grade waste heat

LARGE-SCALE: ICM's Dual M-300 Configuration

Co-Production BioChar:

100+ mt/day 36,000+ mt/yr

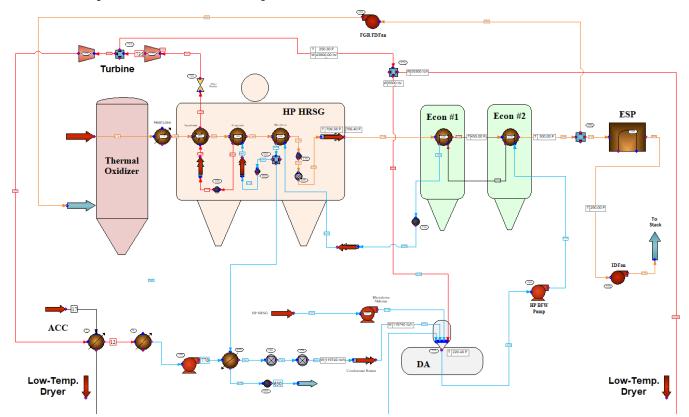
BioEnergy:

up to 60 MWthermal up to 18 MWel

Where To Locate?

- Upgrade Existing or Decommissioned
 Biomass Power Plants
- or Industrial Forest Products
 Processing Facilities
- Locate near Medium-Large Municipalities
- Reduce Carbon Intensity of Cement Plants, Biorefineries, etc.

BIOCHAR AND CHP SYSTEMS


Gasification

vs Pyrolysis

Which Process Can Yield the Largest Climate Impact?

Comparison Using Same CHP Process Assumptions

 Using Very Powerful Process and Combustion Simulation Software (ChemCAD)

o Major CHP Components Include

- Low Temperature Feedstock Dryer
- Gasifiers or Pyrolizers
- Heat Recovery Steam Generator (HRSG)
- Steam Turbine

Feedstock Inputs, Biochar Yields and Low-Grade Heat Recovery

Identical Feedstock Input Assumptions

- **Biochar Yield Assumptions** (dry matter basis)
 - Pyrolysis: 27.7% DM, with 100% recalcitrant C to biochar
 - Gasification: 21.7% DM, with 92% recalcitrant C to biochar
 - Maximum Recalcitrant C yields based on Fixed-C content
 - Derived from Feedstock's Proximate Analysis

○ Single Day Comparison with Ambient Air = - 6.7°C

- Feedstock dried from 50% to 15% mc
- **o** Greenhouse Heating using Low-Grade Heat

CHP Results - Gasification can have a Greater Impact

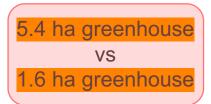
Regarding Electrical Power Generation and Greenhouse Heating

Gasification:

Net Electrical Power 15.9 MWel

Pyrolysis:

Net Electrical Power 8.6 MWel


Low-Temp Dryer 23.7 MWth

Low-Temp Dryer 23.7 MWth

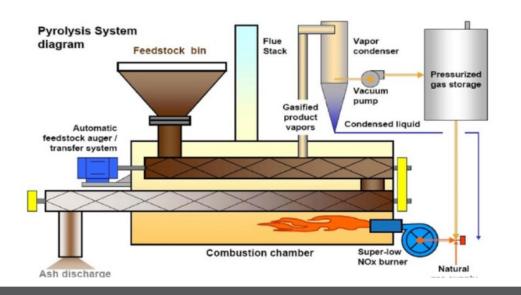
Greenhouse Heating 14.5 MWth

80% waste heat recovery

Ambient Air at - 6.7°C

Greenhouse Heating 4.5 MWth

80% waste heat recovery



Direct Gasification has a Greater CHP Capacity Than Indirectly Heated Pyrolysis Systems

Direct, Autothermic Gasification Processes

- The exothermic process is self-sustaining
- The Hot Producer Gas is then combusted, and
- ALL that heat is available to the downstream CHP Systems

Indirectly Heated Pyrolysis Reactors

- When using its Syngas to drive pyrolysis, less heat is available for downstream CHP systems
- Advantage Pyrolysis: at smaller scales when heat recovery becomes much more expensive
 - \circ especially electrical power generation

Results – Pyrolysis has Greater Overall Biochar Yields When Compared to Typical Low-Volatile Matter Gasification Derived Biochars

Overall Biochar Production

- Pyrolysis: 45,800 mt/y (138.9 mt/d)
- Gasification: 36,000 mt/y (107.9 mt/d)

Recalcitrant Carbon Content

- Pyrolysis: 33,000 mt/y (100.1 mt/d)
- Gasification: 31,700 mt/y (92.1 mt/d)

CLIMATE SOLUTION POTENTIALS

CO_{2e} Removal

Fossil-C Offset

Results - Gasification can have a Greater Impact on CDR and Fossil Carbon Offsets

Using Long-Term Storage of Biochar in Soils

				0		Carbon Only
		Fossil Carbon Offset		Sequestration	Y	
	Power to Grid	Low-T Dryer	Grn H Heating	by Biochar	Biochar	has the
	MWhe/day	MWhth/day	MWhth/day	mt/day	largest	impact
Gasification	380.5	568.8	347.5	92.1		
Pyrolysis	211.2	568.8	107.3	100.1		
					TOTAL	excluding GHH
CO2 equivalent	mt/day ⁽¹⁾	mt/day ⁽²⁾	mt/day ⁽²⁾	mt/day	mt/day	mt/y ⁽³⁾
Gasification	148.4	12.1	7.4	337.5	505.3	164,333
Pyrolysis	82.4	12.1	2.3	366.9	463.6	152,233

(1) 0.3901 mt CO₂ emissions per MWheI (for all US utility scale electrical power plants) ... EIA.gov

(2) 0.0212 mt CO₂ emissions per MWhth ... ChemCAD natural gas combustion simulation (stack temp = 110°C)

(3) Operating 330 days per year

Gasification removes/offsets **12,100 mt CO_{2e} per year** more than an equivalent pyrolysis-based CHP system

via Recalcitran

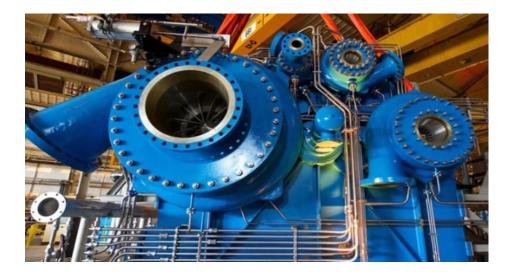
Permanent Storage of High-Volatile Matter Biochars can have an Even Greater Climate Impact

Example: pumping a biochar slurry

- into deep wells or
- abandoned underground salt mines

More on Permanent Storage

Pumping Biochar Slurries


- Low Capital Costs
- Low Power Requirements

Many Locations

- Appropriate for permanent storage of high VM biochars
- \circ Negligible Risk of Leaking CO₂

- CO₂ Compression ~ 2400 psi
 - High Capital Costs
 - Very High Power Requirements
- Limited Geological Formations
 - Appropriate for permanent storage of compressed CO₂

Even Greater Climate Impacts are Possible using Permanent Storage of High VM Biochars

ICM Gasifiers can also High VM Biochars

- Producing a mixture of biochar and torrefied biomass
- via high precision control of air inputs and distribution

	F	ossil Carbon Offse	t	Sequestration	L .	Higher VM Biocha
	Power to Grid	Low-T Dryer	Grn H Heating	by Biochar		
	MWhe/day	MWhth/day	MWhth/day	mt/day		
Gasification	364.6	568.8	214.4	125.9		
Pyrolysis	211.2	568.8	107.3	125.9		
					TOTAL	excluding GHH
CO2 equivalent	mt/day ⁽¹⁾	mt/day ⁽²⁾	mt/day ⁽²⁾	mt/day	mt/day	mt/y ⁽³⁾
Gasification	142.2	12.1	4.5	461.3	620.2	203,154
Pyrolysis	82.4	12.1	2.3	461.3	558.0	183,400

(1) 0.3901 mt CO₂ emissions per MWhe (for all US utility scale electrical power plants) ... EIA.gov

(2) 0.0212 mt CO₂ emissions per MWhth ... ChemCAD natural gas combustion simulation (stack temp = 110°C)

(3) Operating 330 days per year

Gasification removes/offsets 19,750 mt CO_{2e} per year more than an equivalent pyrolysis-based CHP system

What is the Impact of Feedstock Transportation?

CO_{2e} Emissions for Feedstock Transport*

- 50 trucks/day
- 100 miles/day/truck
- 5000 miles/day
- 6 miles/gal diesel
- 833 gal diesel/day
- 10.19 kg CO_{2e}/gal (EIA)
- 8.49 mt/day CO_{2e}

* Assumes ONLY waste feedstock collection from Forest Product Facilities

CDR + Fossil C Offsets500 mt/dCO2e

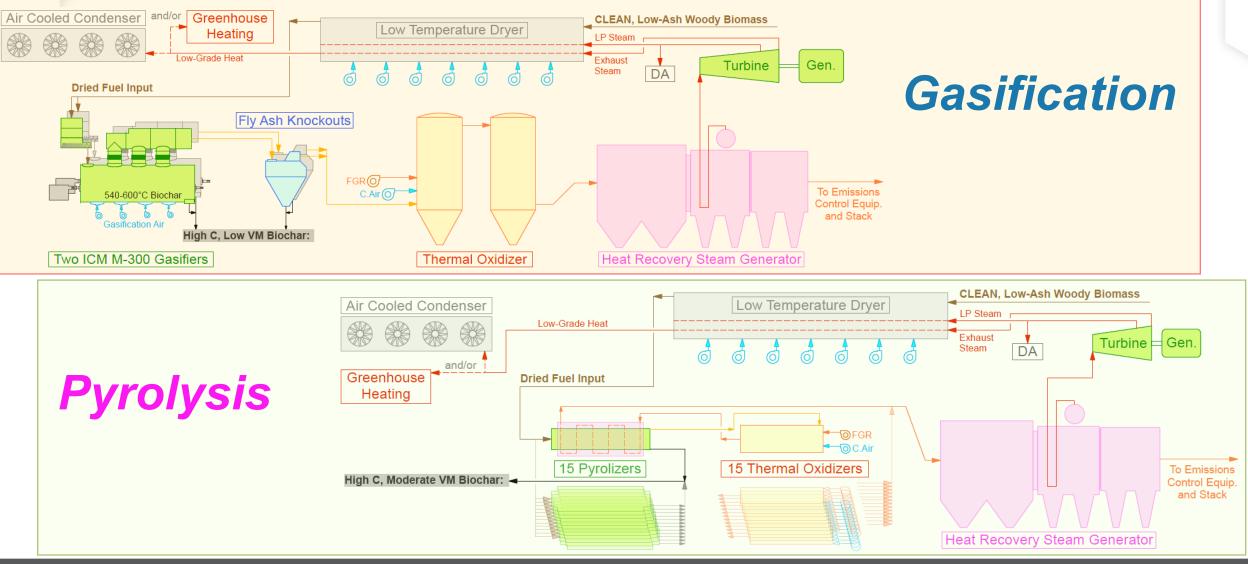
Better with EVs << CO_{2e}

Diesel Fuel 9 mt/d CO_{2e}

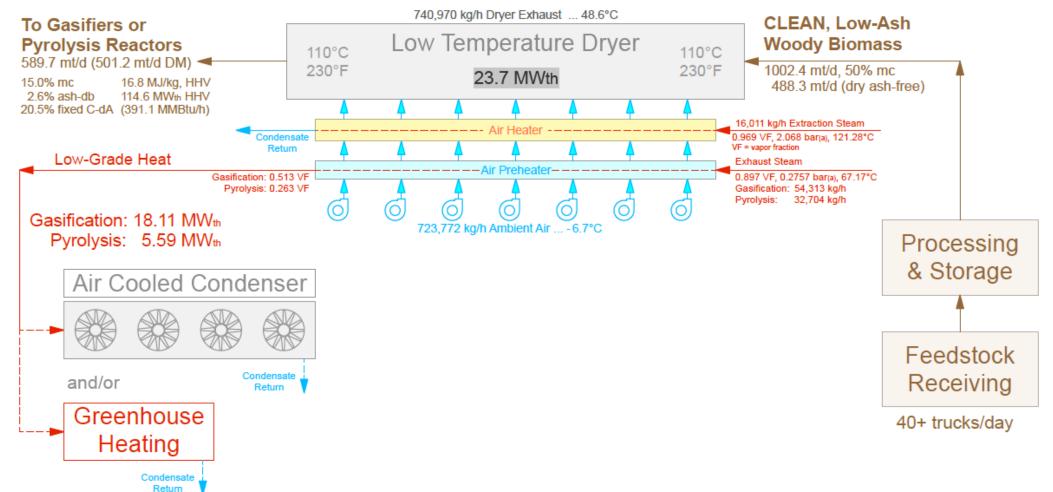
MORE DETAILS

Process Flows and Mass and Energy Balances

Pyrolysis System Performance Estimates

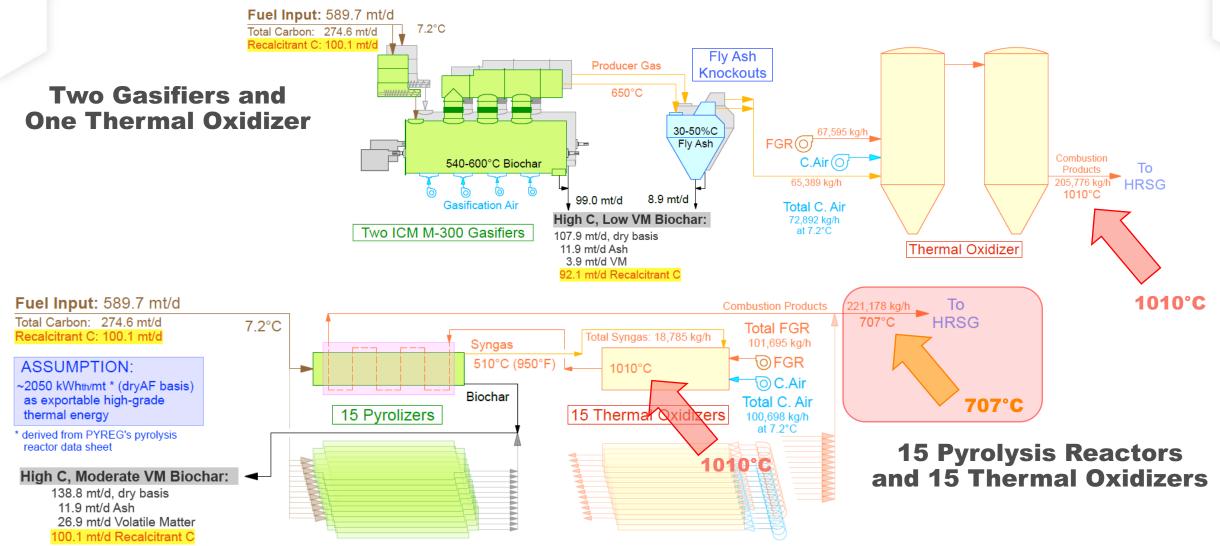

Source Information (pyreg.com/downloads): Data Sheet "230908_flyer_datenblaetter_biomass_EN_DRUCKDATEN"

	PX500	PX1500	PX6000	Feedstock "As Received"
Combustible rating	500 kW	1,500 kW	6,000 kW	at 20% mc & 6% ash dry basis
Annual throughput 05, 20 % water content	1,100 t	3,300 t	13,000 t	13,000 mt 8,000 h = 1.625 mt/h
Annual production 05, 20 % water content	300 t	900 t	3,600 t	Feedstock "Dry Matter"
Annual carbon removal potential	700 t CO ₂	2,100 t CO ₂	8,400 t CO ₂	$\frac{1.625 \text{ mt}}{h} \star (1 - 0.2) = 1.3 \text{ mt/h (db)}$
Maximum thermal capacity	200 kW _{th}	600 kW _{th}	2,500 kW _{th}	Feedstock "Dry Ash-Free"
Annual excess thermal energy	1,600,000 kWh	4,800,000 kWh	19,200,000 kWh	$\frac{1.3 \text{ mt}}{h} * (1 - 0.06) = 1.222 \text{ mt/h} (dAF)$
Annual hours of operation	8,000 h	8,000 h	8,000 h	h
Daily labour	4 h	4 h	4 h	
Power consumption	up to 12 kW_{el}	up to 40 kW _{el}	up to 120 kW _{el}	Biochar "Dry Matter"
Size l x w x h	12 m x 6 m x 5 m	13 m x 7 m x 7.8 m	18 m x 7.5 m x 6 m	(3,600 mt) 8,000 h ∗ (1 -0.2) = 0.36 mt/h (db)
OS = Original substance Maximum figures based on 8,00	00 operating hours Wood containing 48 % c	arbon and 6 % ash) Metric tons		,
aximum Excess T	hermal Energ	gy Biocha	r Yield "% Dry N	Matter" Power Consumption
$\frac{2,500 \text{ kW}_{\text{th}} * 1 \text{ h}}{1.222 \text{ mt}} =$	2,045.8 kWhth/r	nt	$\frac{0.36 \text{ mt/h}}{1.30 \text{ mt/h}} = 0.277$	Maximum 120 kWel per one (1) PX6000
~ 2,050 kV	Vhth/mt	:	27.7% DM	Assume 60% of max. 72 kWel per (1) PX6000

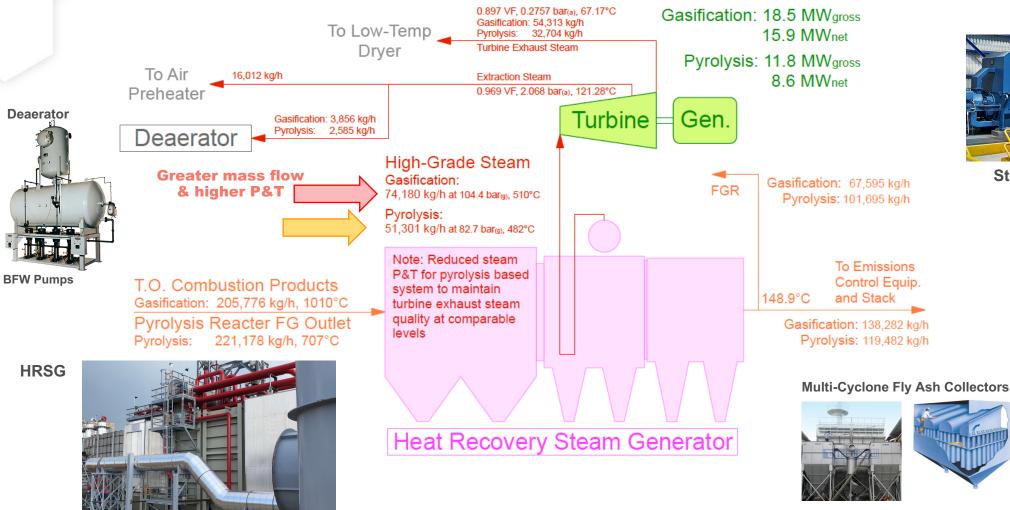

(dry ash-free basis)

A list of ICM's patents is available on request and at www.icminc.com/patents. © 2024 ICM, Inc. All rights reserved.

Biochar and CHP - Process Flow Diagrams



Feedstock Drying and Low-Grade Heat Utilization - Mass & Energy Balance -



Gasifiers and Pyrolysis Reactors – M&EB

HRSG and Steam Turbine – Mass & Energy Balance

Steam Turbine & Generator

Electrostatic Precipitator

A list of ICM's patents is available on request and at www.icminc.com/patents. © 2024 ICM, Inc. All rights reserved.

More Details - Mass and Energy Balance

Feedstock Characteristics

At Dryer Outlet

Proximate Analysis	dry AF	kg/h	mt/d
Fixed Carbon	<mark>20.505%</mark>	4,171.8	100.1
Volatile Matter	79.495%	16,174.0	388.2
Biomass, dry ash-free		20,345.8	488.3
HHV, kJ/kg MW _{th} (HHV) LHV, kJ/kg	-	16,782.8 114.5 15,357.9	
Ultimate Analysis	% wt	kg/h	mt/d
Carbon	46.57%	11,441.4	274.6
Hydrogen	46.57% 4.85%	11,441.4 1,192.7	274.6 28.6
		·	-
Hydrogen	4.85%	1,192.7	28.6
Hydrogen Nitrogen	4.85% 0.16%	1,192.7 38.4	28.6 0.9
Hydrogen Nitrogen Oxygen	4.85% 0.16% 31.21%	1,192.7 38.4 7,667.8	28.6 0.9 184.0
Hydrogen Nitrogen Oxygen Sulfur	4.85% 0.16% 31.21% 0.01%	1,192.7 38.4 7,667.8 2.2	28.6 0.9 184.0 0.1
Hydrogen Nitrogen Oxygen Sulfur Chlorine	4.85% 0.16% 31.21% 0.01% 0.01%	1,192.7 38.4 7,667.8 2.2 3.3	28.6 0.9 184.0 0.1 0.1

Assumption: The feedstock's Proximate Analysis value for fixed carbon content is the source and maximum LIMIT for the Biochar's recalcitrant carbon content

Parasitic Load Estimates

Gross and Net Power Generation Estimates

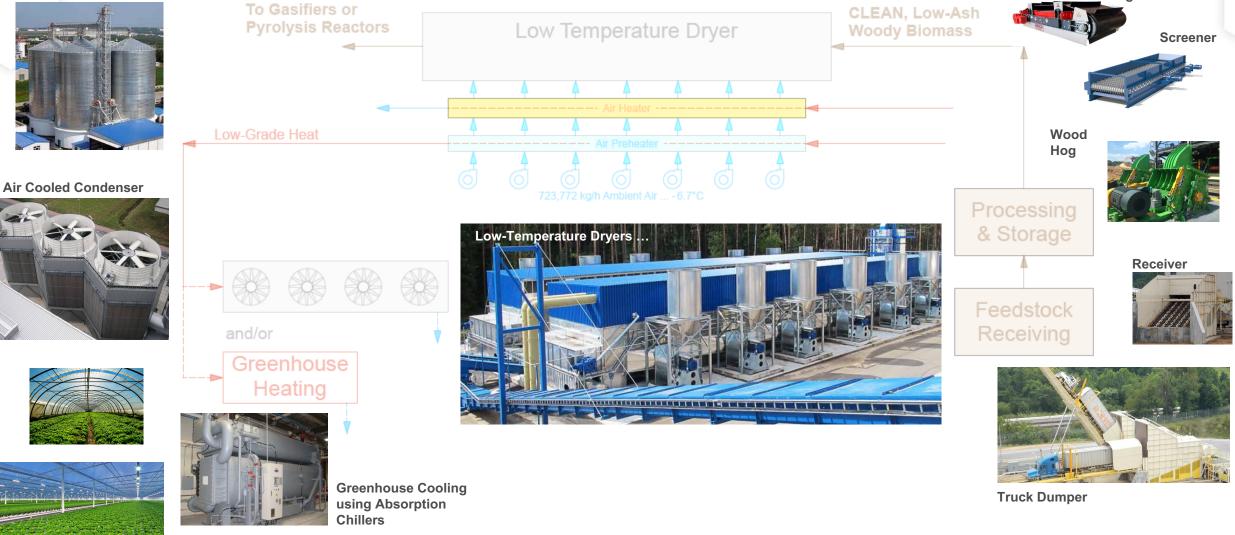
Gasification - Biochar & CHP Sys	tem	Pyrolysis - Biochar & CHP Syste	m	
Parasitic Load Category kW		Parasitic Load Category	kW	Comments
Feedstock Prep & Handling	750	Feedstock Prep & Handling	750	
Low-Temperature Dryer (-6.7°C amb. air)	530	Low-Temperature Dryer (-6.7°C amb. air)	530	17.2 mt/h evaporative load (50% mc feed)
Low-T Dryer Conveyors	20	Low-T Dryer Conveyors	20	
		Extra handling/metering to (15) pyrolizers	50	
Feedstock Metering System	70	Feed Metering System	included	in the load estimate for the PX6000
Two (2) M-300 Gasifiers (fan, CW, augers)	40	Fifteen (15) PX6000 Pyrolizers	1,080	assumes 60% of max 120kW per (1) PX6000
Biochar Cooling Conveyors	30	Biochar Cooling Conveyor	included	in the load estimate for the PX6000
		Extra biochar handling from 15 pyrolizers	15	
Biochar handling and processing	100	Biochar handling and processing	100	
Thermal Oxidizer (CA & FGR fans)	125	Thermal Oxidizer (CA & FGR fans)	included	in the load estimate for the PX6000
Thermal Oxidizer Fly Ash Handling	5			
HRSG Fly Ash	5	HRSG Fly Ash to storage/loadout	5	
Fly Ash storage/loadout	10	Fly Ash storage/loadout	10	
HRSG Boiler Feedwater Pump	565	HRSG Boiler Feedwater Pump	320	
Misc. condensate pumps	10	Misc. condensate pumps	10	
Air Cooled Condenser (turbine exhaust)	114	Air Cooled Condenser (turbine exhaust)	37	
Emissions Control Equipment (ESP)	20	Emissions Control Equipment (ESP)	20	
ESP Fly Ash Handling	5	ESP Fly Ash Handling	5	
ID Fan	210	ID Fan	175	
Compressed Air	75	Compressed Air	75	
TOTAL Parasitic Load	2,684	TOTAL Parasitic Load	3,202	
Gross Power Generation	18,537		11,807	
Net Power to Grid	15,853		8,605	

CASE 1: 50%mc Feed, 17.2 mt/h Evaporative Dryer Load, and -6.7°C Ambient Air Temp.

CASE 2: 35%mc Feed, 7.56 mt/h Evaporative Dryer Load, and 23.9°C Ambient Air Temp.

Air Cooled Condenser (turbine exhaust)	210	Air Cooled Condenser (turbine exhaust)	133	
Low-Temperature Dryer (23.9°C amb. air)	240	Low-Temperature Dryer (23.9°C amb. air)	240	7.56 mt/h evaporative load (35% mc feed)
All other loads	2,040	All other loads	2,635	
TOTAL Parasitic Load	2,490	TOTAL Parasitic Load	3,008	
Gross Power Generation	19,142		12,551	
Net Power to Grid	16,652		9,543	

COMBINED HEAT AND POWER


Large Scale Proven Systems

Well Developed Technologies

Large Scales using Well Developed, Mature Technologies

Dried Feedstock Storage

Magnets

Advantages - Steam Turbines, Air Cooled Condensers and Low Temperature Dryers

Steam Turbine and Generator

Economies of Scale

5 MW, \$2,000,000 USD*
20 MW, \$4,000,000 USD*
40 MW, \$6,000,000 USD*

* Excludes installation, etc.

Low-Temperature Dryer

Air Cooled Condenser

Why Air-Cooled Condensers instead of Cooling Towers?

- Integration with low-temp dryers
- Eliminates water consumption
- Disadvantage More \$\$

Cooling Tower

- Advantage can use low-grade waste heat
- Advantage low-temp = reduced emissions
- Disadvantage More \$\$

ICM'S PATENTED GASIFICATION TECHNOLOGY

IC

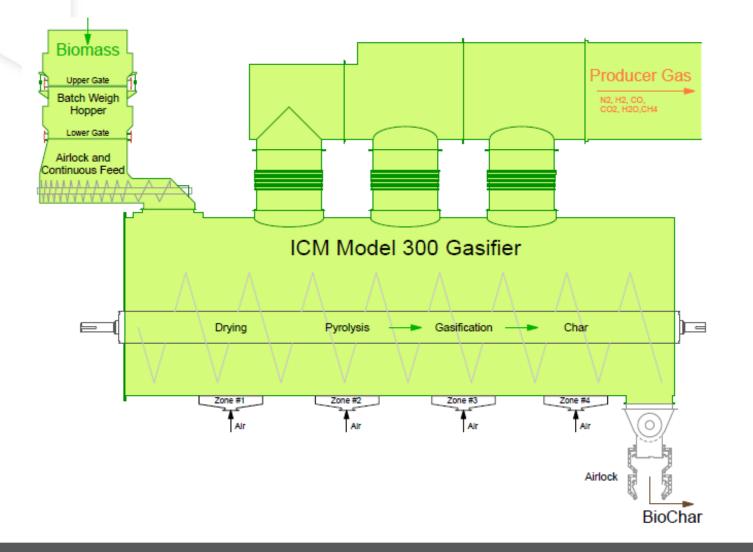
Development Started In Early 1970s

16+ years of Development, Refining and Demonstrating ICM's Gasification Platform

Two Demonstration Facilities 2007 to 2016 \bigcirc

- 135 and 15 mt/d nominal throughput
- Numerous feedstocks tested

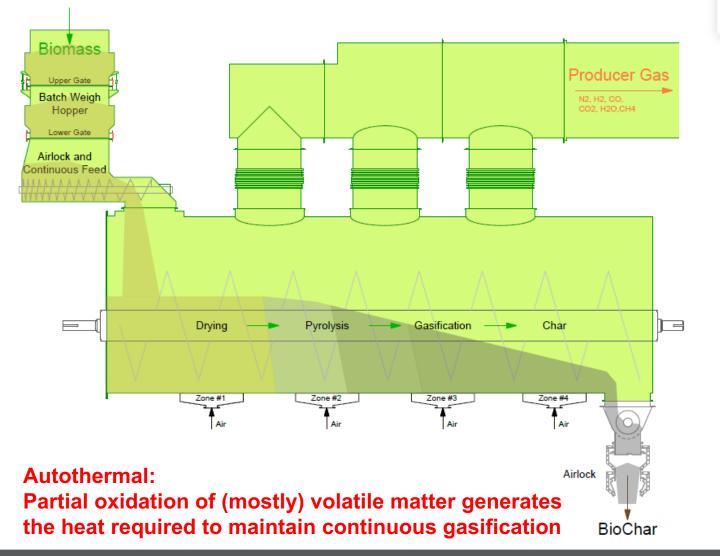
 9000 tons demonstrated 400 tons biochar to Research Institutions 						
	Tested Fe	edstocks				
Wood	4,600 tons	Auto shredder res	50 tons			
Corn stover	1,000 tons	MSW (RDF)	800 tons			
Wheat straw	400 tons	MSW (RDF) + Tires	400 tons			
Sorghum stalks	400 tons	Min. processed MSW	120 tons			
C & D	200 tons	Chicken litter	220 tons			
Paper pulp + plastics	100 tons	Dairy manure	50 tons			
Switchgrass	50 tons	Manure + wood chips	50 tons			
Corn bran + syrup	50 tons	Tires + Wood chips	50 tons			



A list of ICM's patents is available on request and at www.icminc.com/patents. © 2024 ICM, Inc. All rights reserved.

Unique Robust Design: One Moving Internal Part

- Horizontal, "Cross-Flow"
 Gasifier
- \circ Air Blown Autothermic
- $\circ~$ Very Low Power Draw
 - < 70kW per 300mt/d</p>
 - Near-Atmospheric Pressure
- **o Better Scalability**
 - vs Indirectly Heated Pyrolysis
 - vs Updraft or Downdraft Gasifiers
- \circ Feedstock Flexibility


ICM Gasifiers and Better Control

Better Control

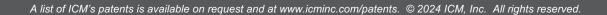
- Mass input, adjustable bed depth
- Variable-speed, Low rpm auger
- Adjustable retention time
- Zoned air to maximize biochar yield
- Wide turndown range
- 10 35+ % moisture content

Lower Power Required to Operate

- Autothermal: no indirect heating
 - Benefit: Scalability & Efficiency
- Low Power: < 70 kW for Model-300 gasifier operating at 300 mt/day
 - Infeed & takeaway conveyors
 - Feedstock metering
 - Main internal auger drive (just 5 kW)
 - Gasification air supply fans
- After start, no external fuel required

Typical Gasification Based Biochars

Five Samples from 2016 Biochar Yield Demonstration Study*


Organic Carbon	89.3 to 91.7
H:C Mole Ratio	0.24 to 0.42
Total Ash	2.4 to 4.0
Total N	0.78 to 0.94
рН	9.37 to 10.12
Liming	5.2 to 7.0
S. Area Correlation	194 to 231
Germination	100%

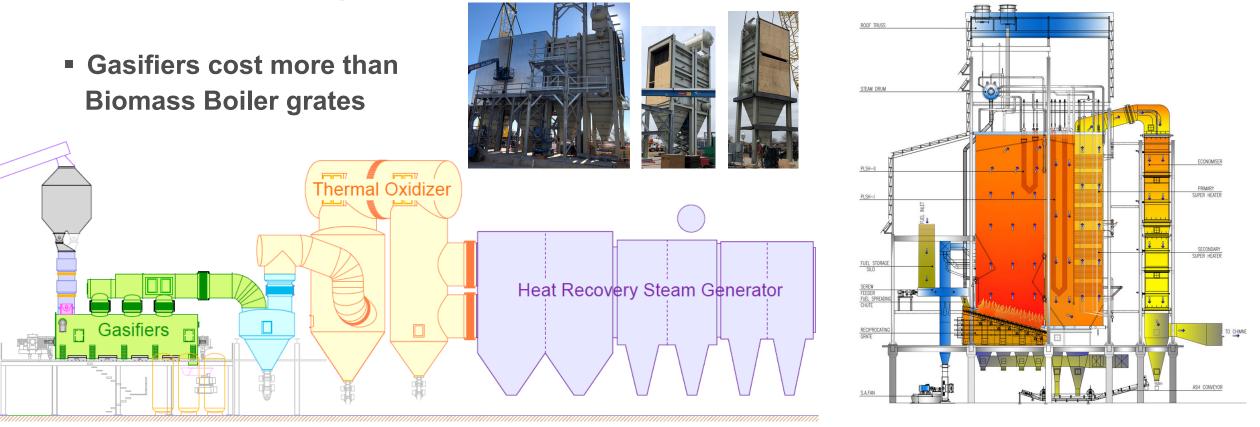
* At ICM's Newton, Kansas R&D Gasification Facility ... June 2016

IBI Biochar Certification Program

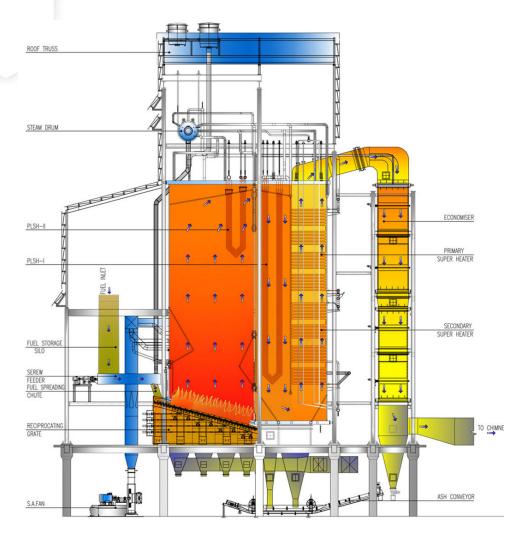
0								ount No:
Con	trol Labo	rato	ries				9135	
42 Hangar Wa							Batc	h:
Watsonville, C	A 95076						JUL	2016 A
www.biocharla Tel: 831 724-3							COD	E:
Fax: 831 724-3							BioC	har IBI
	Date Received:		6/29/2016					
	Sample ID:		IMC-24HR-C	49				
	Lab ID. Number:		6060884-02					
	Int	ternatior				Tests for Certifica	-	
			Dry Basis U	nless Stated:	Range	Units	Method	
Moisture (time	e of analysis)			3.2		% wet wt.	ASTM D1762-84 (105c)	
Bulk Density				7.0		lb/cu ft		
Organic Carb				90.4		% of total mass	Dry Combust-ASTM D 4	
Hydrogen/Car	bon (H:C)			0.42	0.7 Max	Molar Ratio	H dry combustion/C(ab	ove)
Total Ash				2.4		% of total mass	ASTM D-1762-84	
Total Nitrogen	1			0.94		% of total mass	Dry Combustion	
pH value				9.37		units	4.11USCC:dil. Rajkovid	h
Electrical Con	ductivity (EC20 w	/w)		0.207		dS/m	4.10USCC:dil. Rajkovid	h
Liming (neut.	Value as-CaCO3)			5.2		%CaCO3	AOAC 955.01	
Carbonates (a	as-CaCO3)			1.9		%CaCO3	ASTM D 4373	
Butane Act.				3.0		g/100g dry	ASTM D 5742-95	
Surface Area	Correlation			229		m2/g dry	G	
All units mg/k	g dry unless state	d:	Range of	Reporting		Particle Size Distrib	ution	
	R	esults	Max. Levels	Limit (ppm)	Method		Results Units	Method
Arsenic	(As)	ND	13 to 100	0.58	J	< 0.5mm	0.2 percent	F
Cadmium	(Cd)	ND	1.4 to 39	0.23	J	0.5-1mm	0.8 percent	F
Chromium	(Cr)	ND	93 to 1200	0.58	J	1-2mm	4.6 percent	F
Cobalt	(Co)	ND	34 to 100	0.58	Ĵ	2-4mm	18.6 percent	F
Copper	(Cu)	1.8	143 to 6000	0.58	J	4-8mm	39.8 percent	F
Lead	(Pb)	ND	121 to 300	0.23	J	8-16mm	34.5 percent	F
Molybdenum	v /	ND	5 to 75	0.58	Ĵ	16-25mm	1.5 percent	F
Mercury	(Hg)	ND	1 to 17		EPA 7471		0.0 percent	F
Nickel	(Ni)	ND	47 to 420	0.58	J	>50mm	0.0 percent	F
Selenium	(NI) (Se)	ND	2 to 200	1.16	J	Basic Soil Enhance		-
Zinc	(3e) (Zn)		416 to 7400	1.16	J	Total (K)	3316 mg/kg	E
Boron	(ZII) (B)		Declaration	5.80	-	Total (P)	216 mg/kg	E
Chlorine	(-)		Declaration	20.0				A
Sodium	(CI)		Declaration	20.0 579.8	E	Ammonia (NH4-N)	2.1 mg/kg	A
Iron	(Na)		Declaration	579.8 29.0	E	Nitrate (NO3-N)	0.7 mg/kg	A Calc
	(Fe)				J	Organic (Org-N)	9367 mg/kg	
Manganese	(Mn)		Declaration	0.58		Volatile Matter	11.3 percent dw	
	for "not detected"							
	Rayment & Higgi			EPA3050B/E		J	EPA3050B/EPA 6020	
	Enders & Lehman			ASTM D 286				
	Wang after Rajar	ı	G		-		sed on McLaughlin, Shie	
D	ASTM D1762-84			& Thiele's 20	12 paper: /	nalytical Options for	Biochar Adsorption and	Surface Area

Analyst: Nik Zumberge

Gasification, Thermal Oxidizers and HRSGs

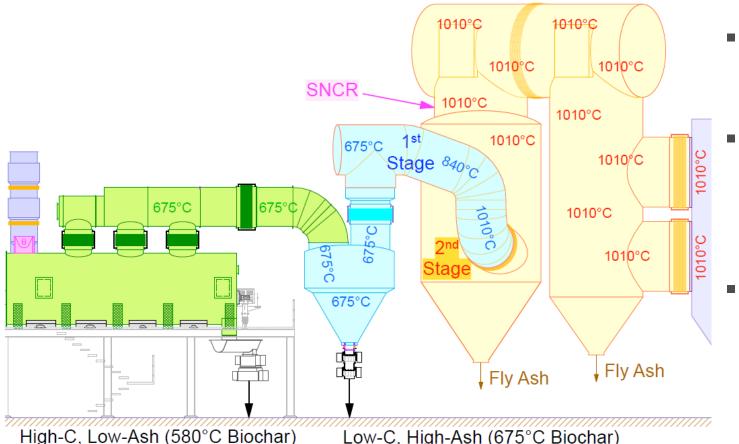

VS

Traditional Biomass Boilers



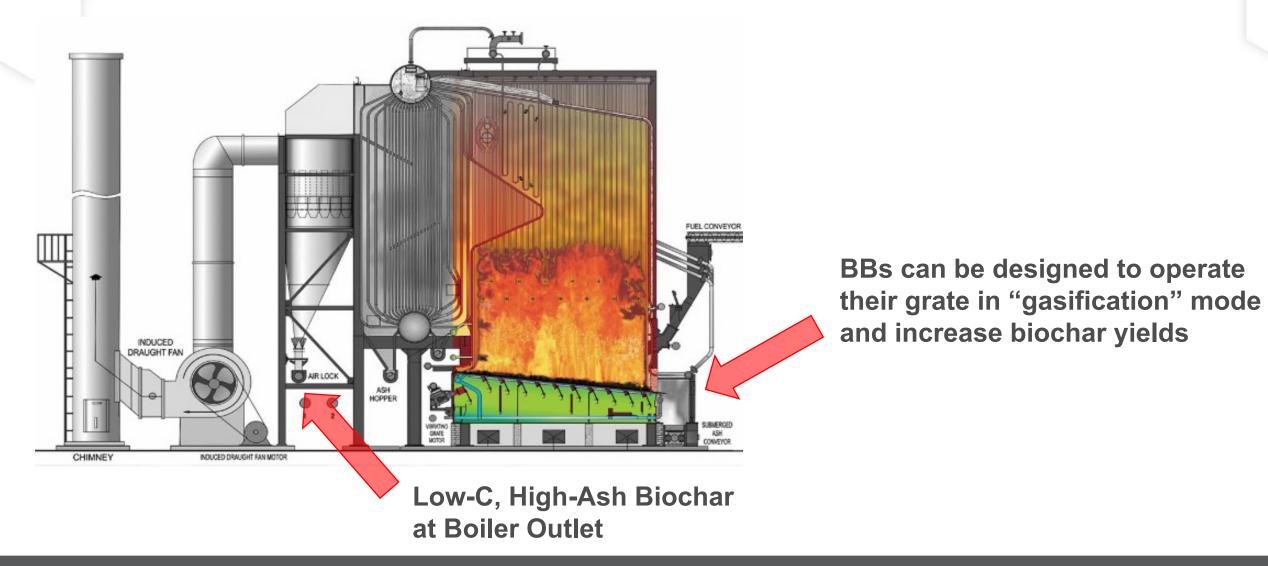
Competitive Costs

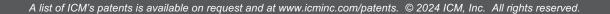
- Large BBs require more field labor to install and have higher install \$
- Gasifiers with TOs can use lower cost shop fabricated TO components and modular HRSG components



Large Scale Biomass Boilers - Advantages

- High Efficiency Conversion: of feedstocks to combustion products
 - High conversion is NOT an advantage when maximizing biochar
 - If that's the goal, gasifiers & TOs can also be designed for high conversion efficiencies
- BBs can combust very high moisture feedstocks
 - But that's NOT an advantage when maximizing biochar
 - More fixed-C is combusted to vaporize excess H₂O

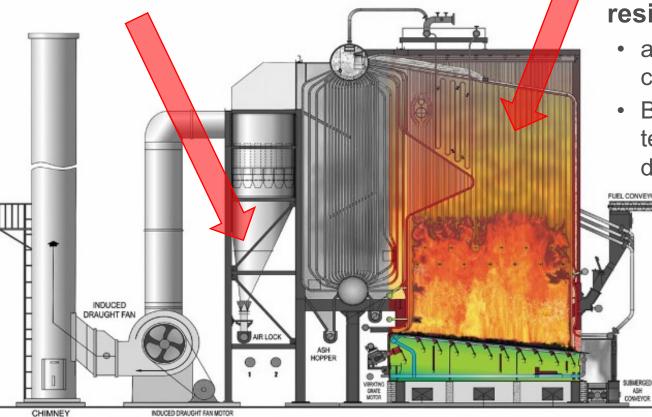

ICM Gasifiers Collect All Biochars before the Thermal Oxidizer



- High-C, Low-Ash, Low-VM Biochar at Gasifier Outlet
 - ~ 90% of total biochar production
- Low-C, Higher-Ash Biochar at Fly Ash Knockout

- ICM's Biochars are NOT exposed to high temps
 - that are typically found inside the Biomass Boiler's furnace

Most Biomass Boilers Collect Biochar at their Outlet



Biomass Boilers Have Higher Emissions!

Biochar yield at BB's outlet =

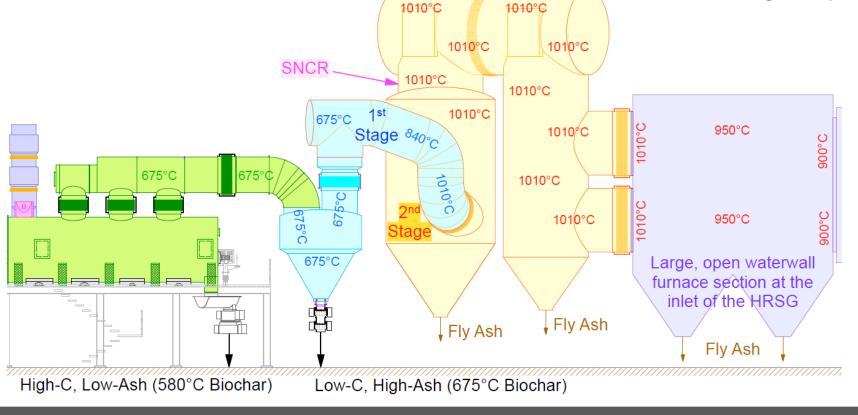
incomplete combustion of carbon & char particles in the BBs furnace

Why higher emissions?

- Relatively short residence times
 - at optimum temps for complete combustion
 - Because furnace temps quickly decrease

Shorter residence times at appropriate oxidation temps will adversely impact emissions for: NOx, VOCs, CO, CH4 and other C_xH_y

Thermal Oxidation with Long Residence Times


ICM's Dual M-300 Thermal Oxidizer:

10x or more residence time than BBs

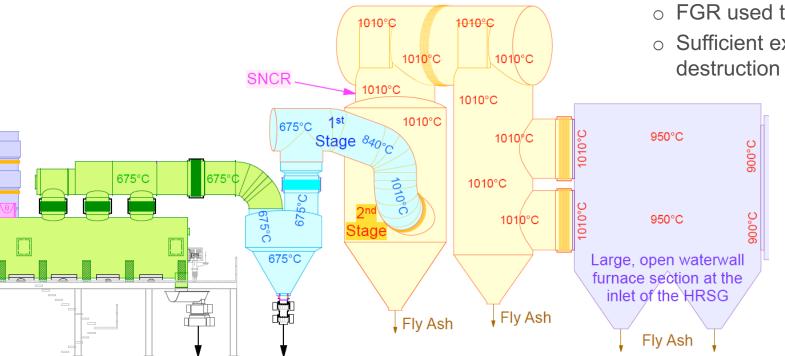
It's very easy to design for even longer retention times

At Constant High Temperatures

- Optimum for thermal oxidation
- In contrast, Biomass Boilers immediately begin to pull heat & drop temps

With Turbulent Flow

• For better mixing of combustion reactants

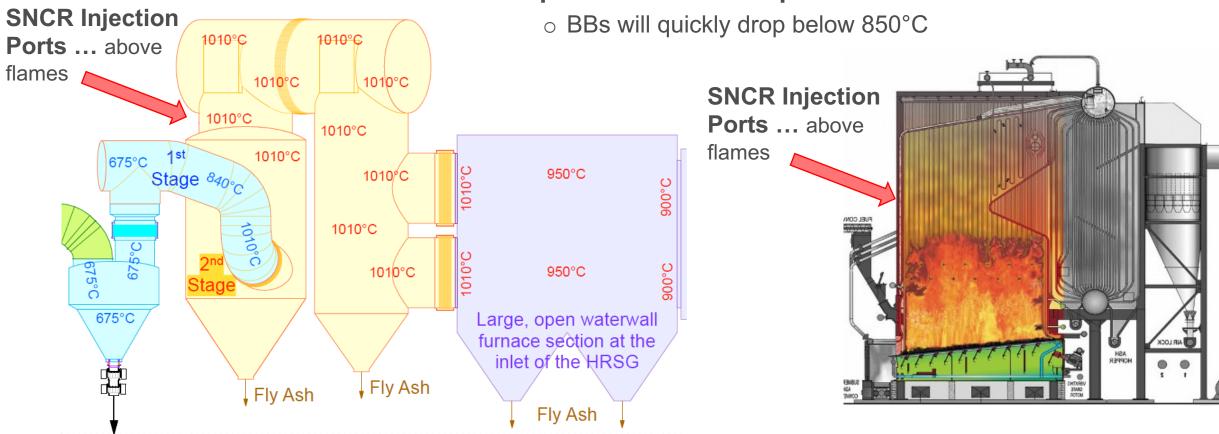

Staged Combustion – To Maximize Thermal Oxidation and Minimize Thermal NOx Formation

ICM: Staged Combustion with Flue Gas Recirc.

1st Stage Combustion

High-C, Low-Ash (580°C Biochar)

○ Starts high temp destruction of soot, VOCs, etc.



Low-C, High-Ash (675°C Biochar)

• 2nd Stage Combustion

- \circ Long, turbulent residence time at ~1000°C
- FGR used to minimize thermal NOx
- Sufficient excess air to maximize destruction of VOCs, CO, CH4, etc

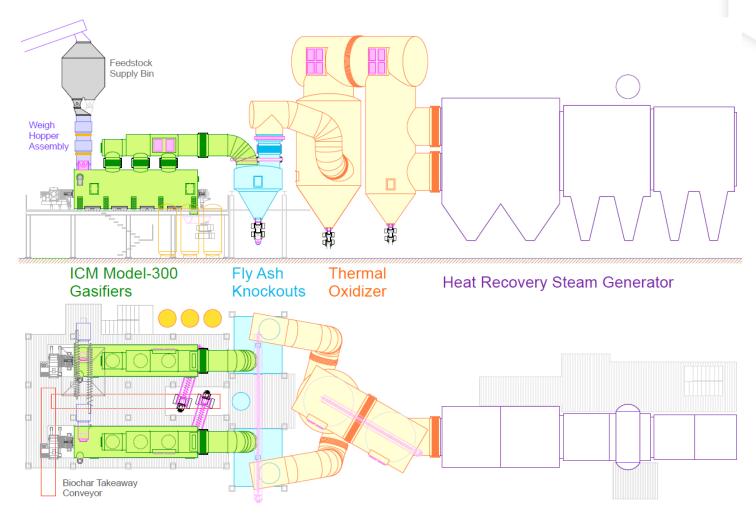
Up to 20x Longer Residence Time at Optimum SNCR Temperatures for NOx Control

Optimum SNCR Temps = 850°C to 1050°C

ICM's Dual M-300 Gasification System

Applications for Biochar and CHP Systems

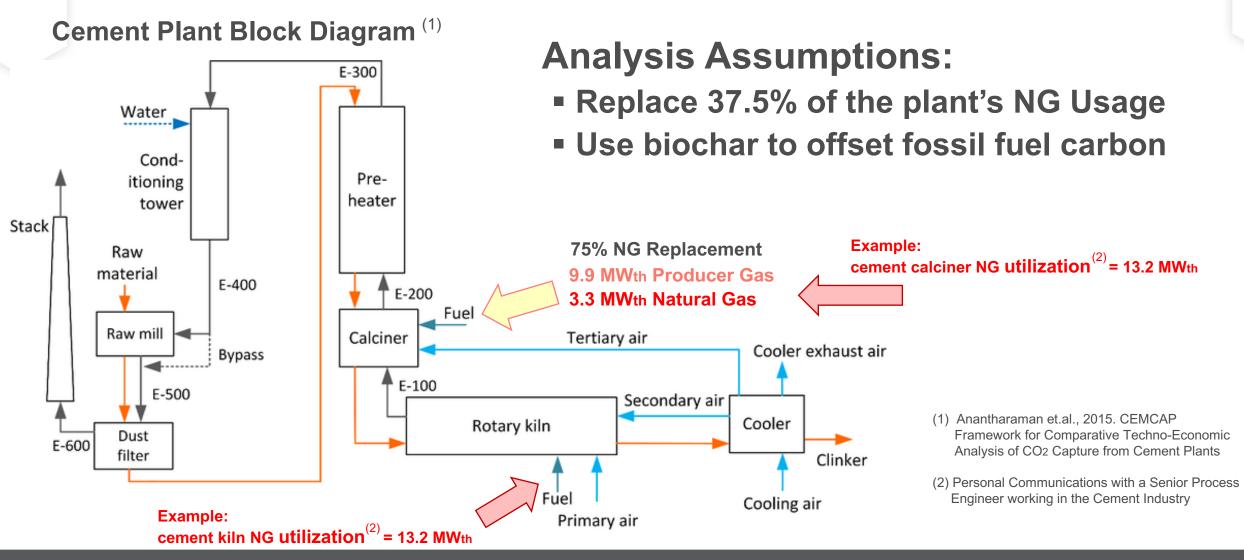
ICM's 1st Dual M-300 and CHP System


- Bio-refinery located in Colwich, KS
- Up to 70% natural gas offset in the HRSG
- Biomass gasification design capacity up to 350 mt/day
- Co-generation of power: 7 MWel
- 61,200+ kg/h of MP steam to plant
- Commissioned in 2020

ICM's 2nd Dual M-300 Project in Progress

BIOCHAR and CHP

- Location: Pacific NW
- 590 mt/d Throughput of Woody Biomass
- 110 mt/d Biochar Production
- Co-Production of 18 MWel
- Preliminary Engineering Contract Completed
- Detailed Engineering Starting Soon



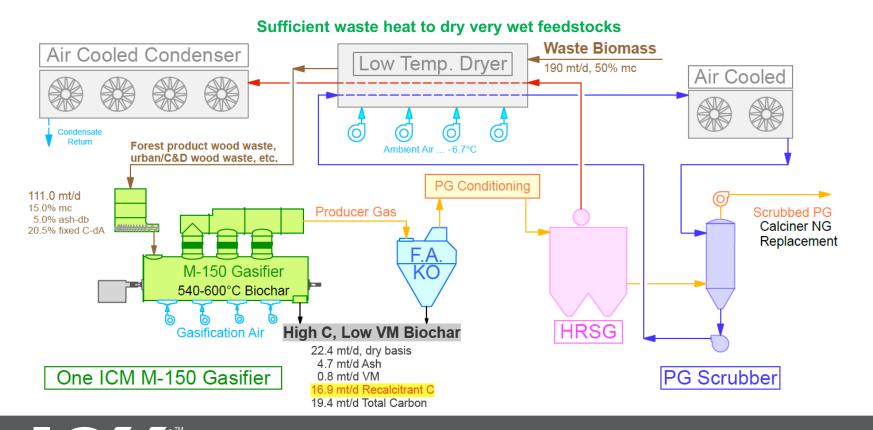
OTHER POTENTIAL APPLICATIONS

Cement Plants

- Municipal Wastes
- Biochar, CHP and Renewable Chemicals

Offset Fossil Fuel Carbon at Cement Plants

Offset Fossil Fuel Carbon at Cement Plants


RESULTS ... Replace 37.5% of the plant's NG Usage

- 16.5 MWth of natural gas (HHV basis) =
- Offset with 16.9 mt/d recalcitrant carbon =

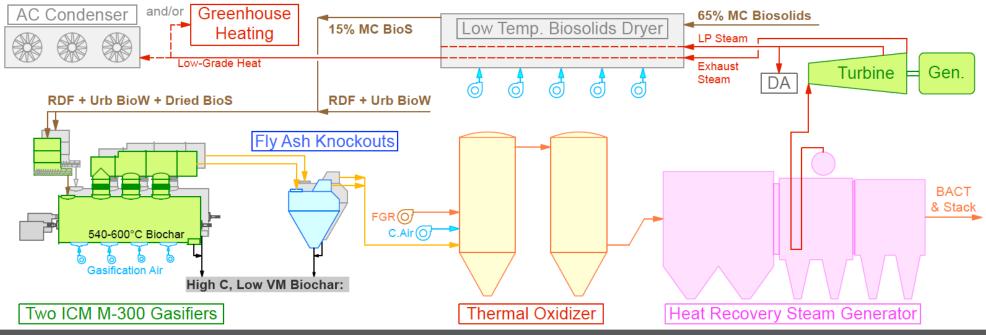
71.6 mt CO₂/d n = 62.0 mt CO_{2e}/d

(rotary kiln and calciner fuel use only)

Greater Offsets are Possible!

 Produce and place high VM biochars in permanent storage

Municipal Wastes to Char and CHP


Urban Waste Biomass + Refused Derived Fuel (from MSW) + Biosolids

- 200 mt/d (dry matter)
- 98 mt/d biogenic carbon
- Woody biomass from C&D, waste pallets, palm fronds etc.

- 200 mt/d (dry matter)
- 39 mt/d biogenic carbon
- 60 mt/d fossil carbon

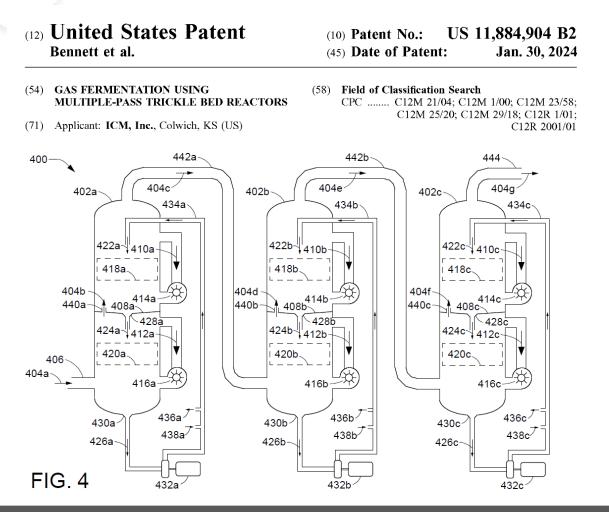
- 39 mt/d (dry matter)
- 13 mt/d biogenic C

Gasification-CHP from 544 mt/d of Urban Waste

Municipal Wastes to Char and CHP

Urban Waste Biomass + Refused Derived Fuel (from MSW) + Biosolids

Biochar Offsets the non-biogenic carbon in the RDF Renewable Electrical Power Generation Offsets Fossil Fuel Carbon


BioChar Production	Carbon Neutral
• 105.4 mt/d, dry	RDF Fuel Utilization
• 60.0 mt/d, R-C	• 60.0 mt/d, R-C
• 42.9 mt/d, Ash	offsets
• 2.5 mt/d, VM	• 60.0 mt/d, fossil-C

Electrical Power Generation	
Net to Grid 13.7 MWel	Annual* Fossil Fuel Carbon Offset Natural Gas 47,740 mt CO2e
	 Petroleum 117,740 mt CO_{2e} Coal113,200 mt CO_{2e}
	* 330 days operation per year

Another Benefit - Landfill Methane reduction by keeping urban biomass & RDF out of landfills

BioChar, BioEnergy and Renewable Chemicals

Still in R&D Phase and Not Ready For Commercial Deployment

Fermentation and Renewable Chemicals

- Microbes are amazing, and highly adaptive
- MP-TBRs Operate at ATM and Low temps
 - Ideal for use with air-blown gasification
 - With very large operational energy savings
- Integration into Gasification based
 Biochar and CHP facilities
 - Share existing facility infrastructure and significant CAPEX savings

Conclusions

- Proven, Large Scale Gasification and Biochar Productions Technologies are Commercially Available
- Large Scales BOP Systems are Well Developed and Mature Technologies
 - Feedstock Handling, Processing and Storage Systems
 - Combined Heat and Power Systems
 - Industrial Scale Emissions Control Systems
 - And far lower emissions compared to 1000s of small unregulated biochar production systems

- Large Scale = Very Large Capital Investments
- Challenging ROIs due to Low-Cost Energy in US
- 1.5 to 2+ years to develop, plus lots of engineering, permitting, etc.
- Municipal Systems further challenged by community concerns over emissions, odors, etc.
 - The good news is Gasification with Long-Residence Thermal Oxidation is NOT incineration!

310 N. First St. Colwich, KS 67030 316.796.0900 | icminc.com

THANK YOU Bert Bennett, Ph.D. Senior Engineer / Principal Scientist Direct Line: +1.316.977.6671 albert.bennett@icminc.com

Patented AGT - Advanced Gasification Technology

Patented Multiple-Pass Trickle Bed Reactors for Gas-to-Liquid Fermentation Processes

Patented Large-Scale, Rotating Drum Torrefaction Reactors

f @icmtechnology

in linkedin.com/company/icm-inc_2

Selective Milling Technology™, Selective Milling Technology V2™, SMT™, SMT V2™, Fiber Separation Technology™, Fiber Separation Technology M, Fiber Separation Technology™, Fiber Separation Technology Next Gen™, FST™, FST Next Gen™, Base Tricanter System™, BTS™, Thin Stillage Solids Separation System™, TS4™, Feed Optimization Technology™, FOT™, Advanced Processing Package™, APP™, the APP™ logo, PROTOMAX™, the PROTOMAX™ logo, ULTRAMAX™, the SOLBRAN™, the SOLBRAN™, the SOLBRAN™ logo and the ICM logo are trademarks of ICM, Inc. © 2024 ICM, Inc.