

RIT Golisano Institute for Sustainability

Pyrolysis as a valorization for plastic-contaminated organic waste streams

Yvan D Hernandez-Charpak Harshal J Kansara Diana Rodriguez Alberto Carlos A Diaz-Acosta Thomas A Trabold February 14th, 2024

Motivation

Organic waste valorization pathways

Golisano Institute for

KII Sustainability

Figure 8. Compostability Group Composition: All Sectors

(Cascadia Consulting Group, 2023)

- Policy increasing separated waste streams for valorization
- Plastic contamination in organic waste streams in an increasing problem...

Plastic contamination in waste valorization streams

of contaminants are plastics (ISWA, 2023)

60%-

75%

is the maximum plastic contamination (dry) (ISWA, 2023 ; EPA, 2021)

150-300 USD\$/ton can be the cost of removal* (ISWA, 2023)

*macro contaminants (>5mm)

Contaminated feedstocks (ISWA, 2023)

Loss of revenue (quality decreases, costs increase) meaning rejection of the waste towards landfilling.

Motivation

RIT Sustainability Pyrolysis for plastic-contaminated organic waste streams

Three RIT-driven case studies:

- Contaminated cafeteria food waste with plastic packaging
- Co-pyrolysis with agricultural mulch films
- Plastic bagged spend mushroom substrate

Food Waste

RIT Golisano Institute for Sustainability

Cafeteria waste characterization

• Collected and sorted waste from cafeteria (3rd to 5th grade) during the 2017-2018 school year:

87%w

13%w

Recyclables
Landfill waste

• Food waste

- Plastic utensils (PP, HDPE)
- Tetra Pak containers
- Chips and snack bags (metalized PP; metalized LDPE)

RIT Golisano Institute for Sustainability

Control Laboratories

6

- IBI standard H:C ratio
- Organic carbon

• рп

• Specific Surface Area

42 Hangar Way All units mg/kg dry unless stated: Range of Reporting Watsonville, CA 95076 www.biocharlab.com Results Max. Levels Limit (ppm) Method Tel: 831 724-5422 Fax: 831 724-3188 Internation ogram ND ۱od ND 34 to 100 Combust-ASTM D 4373 Hydrogen/Carbon (H:C) ND USCC:dil. Rajkovich (CI) 501 Declaration 20.0 TMECC Chlorine (Fe) 33.9 Е Iron 54 Declaration 4 Declaration All units mg/kg dry unless stated: Hydrogen/Carbon (H:C) ND 121 to 300 IUSCC:dil. Rajkovich ND 2 to 200 TMECC (CI) 3855 Declaration Chlorine 20.0 FEB. 12-15, 2024 250 Declaration 33.3 F Μ Iron (Fe)

Pure FW

Chlorine
(501 vs 3855 ppm)
Iron
(54 vs 250 ppm)

Contaminated FW

Agricultural Waste

Agricultural Mulch Films (AMFs)

- Increase yield (Iqbal et al., 2020)
- >2 million t/year (Inglis et al., 2015)
- Most of it is **polyethylene** (PE) based.

Benefits of mulching (adapted from Iqbal et al., 2020)

Agricultural Waste

RIT Golisano Institute for Sustainability

Feedstock characterization

• Co-pyrolysis based on the weight ratios

NYS has a lot of orchards, leaving considerable woody waste. Co-pyrolysis with AMFs, affects the BC quality?

RIT Golisano Institute for Sustainability

Agricultural Waste

WP:LDPE mass ratio	WB/LDPE ratio	du Eff5NR em (°,C)	perserver yield sou			H:C		EC (dS/m)	SSA (m²/g
			(%)						dry)
100:0	100/0 Biomass only	500	27.6			0.56			207
	95/5	500	23.4			0.52		0.12	237
95:5	75/25	500	20.7			0.54		0.14	238
	100/0 Biomass only	800	21.9			0.23	5.93		
	95/5		20.6			0.23	7.22		133
75:25	75/25	800-1	18.6			kx () . 214D: 1		LLL1.0.9	1/37/3 TESCA
					Date(m/d/y): 10	13/21 Print M	AG: 6.32 kx	Chemistry and ON by LDPE	Material Science
1.75-2		USBI	BIOCHARCON	FERENCE.CO	• FEB. 12-	-15, 2024	atilizatio	n	

Registrate Golisano Institute for Sustainability Plastic bagged spend mushroom substrate

Industrial Waste

Industrial Waste

RIT Golisano Institute for Sustainability

- IBI standard H:C ratio
- Organic carbon

• Specific Surface Area

pН

•

		Biochar type							
	Units	Seneca Farms	Blue Oyster SMS	Blue Oyster SMS + 4% HDPE					
	As	ND	0.2	0.5					
	Cd	ND	0.2	0.1					
	Cr	0.9	10.6	160.5					
	Со	ND	1.3	7.0					
	Cu	7.4	15.7	18.4					
	Pb	0.3	2.3	1.9					
	Mo	ND	1.9	3.6					
Metals (mg/kg)	Hg	ND	0.0	0.0					
	Ni	1.0	20.9	273.5					
	Se	ND	0.0	0.3					
	Zn	7.0	46.5	50.0					
	В	8.4	39.0	33.3					
	Cl	ND	209.6	131.9					
	Na	ND	815.9	664.8					
	Fe	215	1,567.0	3,723.9					
	Mn	22	444.9	332.7					
	К	3339	10,109	12,652					
	Р	239	3,959	2,827					
Liming	% Cacus	10.2	17.0	12.5					
Carbonates	% CaCO3			6.0					
Butane	g/100g dry			1.2					
Surface Area	m2/g	304	176	171					
	LICH . DIACUADCONFEDENCE COM . FED 10 15 000								

Nickel
(21 vs 274 ppm)
Iron
(1567 vs 3724 ppm)

JSBI • BIOCHARCONFERENCE.COM • FEB. 12–15, 2024

Conclusions

- Plastic-contaminated organic waste streams are a logistical challenge.
- Biochar properties do not to seem to be sensitive to plastic contamination (up to 10% weight), Surface Area appears to increase!
- Chlorine and other persistent chemicals are a continuous challenge.
- Pyrolysis may be the only alternative pathway for some contaminated organic waste streams

RIT Golisano Institute for Sustainability

Thank you! Questions? yh7993@rit.edu

Empire State Development

