Biochar in the Global Sustainability Discussion

DE

Johannes Lehmann Cornell University, USA

Biochar in Climate Change Mitigation

Large U.S. bi-partisan public support for soil organic carbon and biochar sequestration – perceived 'naturalness' No difference between positive

Cornell University

1222 US adults, Oct 2019

Sweet et

Sweet et al., 2020, Climatic Change 166, 22

Biochar Carbon Market Methods

Higher pyrolysis temperature ≈ higher condensation

Woolf et al 2021 Environmental Science & Technology 55, 14795–14805 Cornell University

(Only experiments longer than one year, 2-pool model, adjustable environment °C)

Climate change mitigation and Land care

No land (crop growth?) benefits = no biochar adoption?

Higher Soil organic C = greater crop growth Average increase is small....

Cornell University

Ma et al., 2023, *Nature Geoscience* 16, 1159-1165

Climate change mitigation and Land care

13,662 controlled field trials with 66,593 treatments across a broad range of soils, climates and management practices representing ten of the 12 soil texture classes pH values of 3-9, SOC of 1–58 g kg-1 exceeding the average range observed for global producing regions of these crops

Ma et al., 2023, Nature Geoscience 16, 1159-1165

Climate change mitigation and Land care

Regionally different SOC yield gap – redistribution of

Current technology: 120 million people's cereal need Unconstrained: 700 million six times larger than the technical potential Affordable?

Unintended consequences? Feasible? What scale? (regionalglobal)

Cornell University

Ma et al., 2023, Nature Geoscience 16, 1159-1165

Not just carbon...

Cornell University

Devault, Lehmann, Woolf, in revision.

Redistribution – example animal excreta

Zhao et al., 2020 Sustainable Chemistry & Engineering 8, 4633-4646

Spatial Optimization: costs – GHG - CDR

Optimization of pyrolysis locations needed for largest net carbon sequestration

100

Cornell University

Zhao et al., 2020 Sustainable Chemistry & Engineering 8, 4633-4646

С

Circular Bionutrient Economy

- Full sterilization, no hormones & antibiotics (500°C)
- High nutrient content
 Separation of N and P
 All essential nutrients

Feces Pyrolysis

6-fold increase in plant-av. P w/w 4-fold increase in total P w/w

Ballroom A04, 11:10 Lucinda Li

91% reduction in mass

No contaminants (heavy metal, PAH, PCB, dioxin/furans, etc.) No known pollutants from manure (pathogens, hormones, antibiotic; PFAS and microplastics not analyzed)

Krounbi et al., 2019, Waste Management 89, 366–378

Nitrogen Recovery from Urine – gas phase

Biochar from wood

Hestrin et al, 2019, *Nature Communications* 10, 664 Hestrin et al, 2020, *Journal of Env Quality* 49, 1690-1702

Biochar Nitrogen Fertilizer Use Efficiency

Similar N uptake between plants treated with biochar exposed to NH₃, compared to conventional N fertilizer

Cornell University

Krounbi et al. 2021, Scientific Reports 11, 15001

Phosphorus Recovery – old story

Cornell University

Tuscan Grand Duke Peter Leopold's chemistry cabinet (1775-90)

Phosphorus isolation from urine of soldiers in the Belvedere Fortress, Florence

Museo Galileo

Phosphorus Recovery with Biochar - new

14% N added, 3.2% N in biochar Oak-ash-maple mix

Pyrolyzed at 600°C

Cornell University

Kim et al, unpublished data

Circular Economy for Nutrients and Carbon

Circular Economy for Nutrients and Carbon

Circular Economy for Nutrients and Carbon

Circular Economy for Biochar-based Materials

Circular Economy for Biochar-based Materials

Not just technology....

Community of practice Community of purpose

www.CBENetworks.org 2024 Kisumu, Kenya

Biochar enabling spatial redistribution of carbon and nutrients from where it is a burden to where it is needed

Leveraging 'externalities' that may emerge as the key drivers (e.g., mass&odor reduction of wastes and...)

Community of practice&purpose as an outgrowth and sustainability principle to close the circle

Biochar as a way of thinking

Cross-Sectoral Approaches for Circularity

Consider "waste" biomass as a value

Consider its carbon, energy and nutrient value

Consider end-of-life even of biochar use in non-soil industries

Requires a global database <u>across sectors (energy-carbon-nutrients)</u> at <u>high spatial resolution where decisions are made</u> (country-level data are not enough!)

Requires multi-criteria decision support tools and includes human decision making

Requires enabling a global biomass management industry: redistribution locally & regionally & globally

The Soil Factory: Innovating Circularity

Cornell University

http://www.thesoilfactory.org/ https://blogs.cornell.edu/lehmannlab/research/art-and-sciences/the-soil-factory/

Thank you

T H I R D E D I T I O N EDITED BY JOHANNES LEHMANN AND STEPHEN JOSEPH Late 2024

Including:

- Building materials
- Transport-storage-application
- Animal feed
- Policy
- And updates on previous chapters

Discount for IBI members, advance purchase and bulk orders

