

# The 3Rs of Biochar Application: Using online decision support tools to apply the *right* biochar in



#### KRISTIN TRIPPE USDA Agricultural Research Service Corvallis, Oregon

- Web Soil Survey
- PNW Biochar Atlas
- Biochar Calculator

### Using Decision Support to Implement the 3Rs



# Technical understanding of biochar has not resulted in increased adoption



## The right source

Feedstock origin and production conditions impact end use



**BIOCHAR:** feedstock origin & production conditions impact physiochemical properties



Difficult to predict how biochar will interact with soils and plants

CAN WE MATCH BIOCHAR **PROPERTIES** WITH SOIL & CROP **NEEDS?** 



### USING BIOCHAR EFFECTIVELY REQUIRES IDENTIFYING MANAGEMENT GOALS

**Identify Goals** 

Find product that meets needs



Use principles from nutrient management to inform amendment strategy



| Area of Interest                            | Soil/Site Property                | Well Suited       | Moderately Suited   | Poorly Suited | Impact            |                       |
|---------------------------------------------|-----------------------------------|-------------------|---------------------|---------------|-------------------|-----------------------|
|                                             | pH (0-30cm)                       | <5.5              | 5.5 - 7.5           | >7.5          | Microbial &       |                       |
| Intro to Soils                              |                                   |                   |                     |               | fungal activity,  |                       |
| Search                                      |                                   |                   |                     |               | nutrient          |                       |
| Suitabilities and I                         |                                   |                   |                     |               | availability      | and the second second |
| Building Site Develo                        | CEC (meq/cm3 to 30cm)             | <4                | 4-12                | >12           | Nutrient          | 14/2 11               |
| Construction Materi                         |                                   |                   |                     |               | storage           |                       |
| Disaster Recovery F<br>Land Classifications | Organic Matter (percent 0-30cm)   | <2                | 2-10                | >10           | Physical &        | A Part                |
| Land Management                             |                                   |                   |                     |               | Chemical          |                       |
| Military Operations                         |                                   |                   |                     |               | Resilience        | -                     |
| Sanitary Facilities                         | Slope (percent)                   | <6                | 6-15                | >15           | Runoff,           |                       |
| Soil Health                                 |                                   |                   |                     |               | erosion           | monthing              |
| Agricultural Orgar<br>Dynamic Soil Pr       | Flooding                          | None to Very Rare | Rare to Occasional  | Frequent      | Removal of        |                       |
|                                             |                                   |                   |                     |               | Sediments         |                       |
| View Options                                | Ponding                           | None              | Very Brief to Brief | Long to Very  | Sediment          | X -q- 1               |
| Мар                                         |                                   |                   |                     | Long          | Transport         |                       |
| Table                                       | Bulk Density                      | >0.4              | 0.4 to 0            | <0            | Compaction,       |                       |
|                                             | (ratio of estimated difference to |                   |                     |               | root              |                       |
|                                             | maximum difference by PSDA)       |                   |                     |               | penetration,      |                       |
| Description of Rating                       |                                   |                   |                     |               | aeration          |                       |
| Rating Options                              | Karst                             | not karst         |                     | karst         | Groundwater       |                       |
| Advanced Options                            |                                   |                   |                     |               | contamination     | 5                     |
|                                             | LEP                               | <4                | 4 to 12             | >12           | Vertical          |                       |
| Farm and Garden                             | (maximum to 30 cm)                |                   |                     |               | redistribution    | Soft The              |
| Fragile Soil Index                          | Ksat                              | >40               | 40 to 14            | <14           | Infiltration, gas | 12                    |
| Organic Matter De                           | (micrometers per second           |                   |                     |               | exchange          |                       |
| Soil Surface Seali                          | maximum to 30 cm)                 |                   |                     |               |                   |                       |
| Soil Susceptibility                         | AWC                               | <0.02             | 0.022               | >0.2          | Plant available   | 24 1.3                |
| Vegetative Producti                         | (cm3/cm3 to 30 cm)                |                   |                     |               | water             |                       |
| Waste Management                            | Rock Fragment Content             | <2%               | 2.1-9.9%            | >10%          | Dilution and      |                       |
| Water Management                            | (cobbles 0 to 30 cm)              |                   |                     |               | workability       |                       |
|                                             |                                   |                   |                     |               | effects           | and the second        |
|                                             | Rock Fragments on Surface         | <0.1              | 0.1-3.0             | >3.0          | Workability       |                       |
|                                             | (percent cover >250mm)            |                   |                     |               | effects           |                       |



## Web Soil Survey

https://websoilsurvey.nrcs.usda.gov/app/



| 2. | Area of Interest (AOI) | Area of Interest (AOI) Soil Map            |        |
|----|------------------------|--------------------------------------------|--------|
|    |                        | Search                                     | (      |
|    |                        | Area of Interest                           | (      |
|    | 10A IOA                | Open All C                                 | lose A |
|    |                        | AOI Properties                             | (      |
|    |                        | Import AOI                                 | (      |
|    |                        | Export AOI                                 | (      |
|    |                        | Quick Navigation                           |        |
|    |                        | Address                                    | (      |
|    |                        | State and County                           | (      |
|    |                        | Soil Survey Area                           | (      |
|    |                        | Latitude and Longitude or Current Location | (      |

PLSS (Section, Township, Range)

Bureau of Land Management Department of Defense

Forest Service National Park Service

Hydrologic Unit

HOW CAN FARMERS CHOOSE THE RIGHT BIOCHAR?

Soi

8

8

۲

8

| 5  |  |  |
|----|--|--|
| -5 |  |  |
|    |  |  |







Use principles from nutrient management to inform amendment strategy

## WWW.PNWBIOCHAR.ORG



## LEARN ABOUT BIOCHAR

- FIND A BIOCHAR THAT
   MEETS YOUR NEEDS
- READ CASE STUDIES
- FIND PRODUCERS
- COMPARE BIOCHARS

### **BIOCHAR DECISIONS IN THREE STEPS**



### **BIOCHAR DECISIONS IN THREE STEPS**



### **Resource Concern**

"a condition of the soil, water, air, plant, animal or energy resource base that does not meet minimum acceptable standards established by NRCS, a condition that impairs the sustainability or intended used of the resource"

#### **PLANTS**

- Plants receive inadequate nutrition during critical growth periods
- Plants fail to thrive due to poor soil condition

#### SOIL

- Organic matter depletion
- Soil organism habitat loss or degradation
- Aggregate instability
- Compaction

Why Should I apply Biochar?

## **IBI Classification System**



#### https://www.biochar-international.org/biochar-classification-tool/

Camps Arbestain M, J.E. Amonette, B. Singh, T. Wang, H-P. Schmidt. 2015. A Biochar Classification System and Associated Test Methods. In: <u>Biochar for Environmental Management – Science and Technology, 2nd edition</u>. J. Lehmann and S. Joseph (eds.). Routledge.

Biochar classification can inform right rate and right source

## **IBI Classification System**

| Fertilizer Class | 4  | <b>4</b> | P<br>2t | P <sub>2t</sub> K <sub>2t</sub> S <sub>5t</sub> Mg <sub>3t</sub> |
|------------------|----|----------|---------|------------------------------------------------------------------|
| Liming Class     | 2  | 2        | Ca      | $aCO_3 - eq = 13.0\%$                                            |
| Class            | Pd | Bler     | ndec    | Powder                                                           |

#### https://www.biochar-international.org/biochar-classification-tool/

Camps Arbestain M, J.E. Amonette, B. Singh, T. Wang, H-P. Schmidt. 2015. A Biochar Classification System and Associated Test Methods. In: <u>Biochar for Environmental Management – Science and Technology, 2nd edition</u>. J. Lehmann and S. Joseph (eds.). Routledge.

The IBI Classification system was the inspiration for our approach to carbon, fertility and pH management.

STEP 1

GATHER INFORMATION

THE TOOLS REQUIRE A SOIL ANALYSIS AND A CROP CHOICE.

| Woods End<br>Laboratories       | L HEA     | ALTH & I   | ERTILITY                                     | AUDIT            | S               | Powered by<br>OLV                       | TA°       |
|---------------------------------|-----------|------------|----------------------------------------------|------------------|-----------------|-----------------------------------------|-----------|
|                                 |           |            | Account / Sample                             | ID:              | 1010            | 10 / 115860                             |           |
| ANYTOWN                         |           |            | Rainfall / Zone:                             |                  | 45 / APF        | ALACHIAN H                              | IGHLANDS  |
|                                 |           |            | Soil Orders:                                 | Inc              | eptisol-Udept   | s / Alfisol-Ud                          | alfs      |
| United States                   |           |            | Your Sample:                                 |                  | Soil: Fa        | alcon 1                                 |           |
|                                 |           |            | Received / Report                            | ed:              | 25/Nov/20       | 1 04/Dec/20                             |           |
|                                 |           |            | Intended Crop:                               |                  | Pasture/H       | av-Improved                             | 1         |
| Solvita® Soil Health Factors    |           | RANKING:   |                                              |                  |                 | , , , , , , , , , , , , , , , , , , , , |           |
| CO2 Respiration, C mg kg        | 69.4      | Optimal    | Nutrients as: lb/a                           |                  |                 |                                         | Est Carbo |
| Solvita Fertility Color (0 - 5) | 4.10      | Medium     |                                              | N                | P205            | K20                                     | lb/a      |
| SLAN amino-N me/ke              | 129       | Medium     | Soil Supply                                  | 78               | 449             | 398                                     | -         |
| VAST Stable Ammerates Vol %     | 23        | Low        | Crop Line:                                   | 120              | 60              | 75                                      | 19.3      |
| Soil Bulk Density g/cc          | 1.07      | Ontimal    | Difference:                                  | 47               | 0               | 0                                       |           |
| Total Carbon                    | 0.90      | Low        | Difference.                                  | -12              |                 |                                         |           |
| Total Carbon                    | 0.50      | 100        |                                              | NUTRIE           | NT FERTI        | LITY                                    |           |
|                                 |           |            | Analysis                                     |                  |                 | Units                                   | RESUL     |
|                                 | /         |            | Factors assume Cli                           | mate Zone        |                 | ZONE                                    | 5         |
|                                 | /         |            | Nitrate as soluble f                         | NO3-N            |                 | mg kg                                   | 3         |
|                                 |           | -          | Est, Biological N-M                          | ineralization    |                 | Ib/a                                    | 74        |
|                                 |           |            | Total (Avail. + N-M                          | in) Potential    |                 | lb/a                                    | 78        |
| ° 64                            | 1         | 100        | Ukelihood of adde                            | d N-Respons      | e               | Rating                                  | Moderat   |
|                                 | TU 171    | CODE       |                                              | Extract          | able Nutrier    | nts                                     |           |
| OVERALL FER                     | TILITY    | SCORE      | Phosphorus Storag                            | e (potentiall    | y available), P | mg kg                                   | 91        |
| RED LINE IS REGION              | +EXPECTED | VALUE      | Phosphorus - Swiss                           | CO2-Equilbr      | rium P          | mg kg                                   | 10.7      |
|                                 |           |            | Potassium - Extrac                           | table K          |                 | mg kg                                   | 156       |
|                                 |           |            | Calcium - Extractat                          | ole Ca           |                 | mg kg                                   | 434       |
|                                 |           |            | Magnesium - Extra                            | ctable Mg        |                 | mg kg                                   | 125       |
|                                 |           |            | Sodium - Extractab                           | le Na            |                 | me ke                                   | 14        |
|                                 | 1         |            |                                              | Rat              | ing Factors     | 0.0                                     |           |
|                                 |           |            | Nutrient Index                               |                  | -               | Rating                                  |           |
| 0                               |           | 50         | Most Limiting Fact                           | or               |                 |                                         | Ē.        |
| •                               | _         | 50         | Cation Balance (Mole                         | er Batio: K + [d | a + Mel )       | Marginal                                | 4         |
| 20                              | )         |            |                                              |                  |                 |                                         |           |
|                                 |           |            |                                              | Ot               | her Factors     |                                         |           |
| SOIL HEAL                       | TH SC     | ORE        | pH in water 1:1                              | 01               |                 | Unit                                    | 1         |
| BLUE & RED INDICATE RE          | GION-EXPE | CTED RANGE | Ontional test (buff                          | er nH)           |                 | Lloit                                   | a         |
|                                 |           |            | Water Soluble Carl                           | 000              |                 | mg kg                                   | 1         |
| Cover Crop Recommendation:      | s         |            | Water Soluble C:N                            | (WSOC:NO3        | -N)             | Unit                                    |           |
| Types of Cover Crop Blends St   | innested- |            | Aluminum Extract                             | able (ontion     | all a           | maka                                    |           |
| 2016 Language Concerning States |           |            | CC (analyzed)                                | and (option      |                 |                                         | a         |
| 20% Legume 80% Grass/Non-I      | egonne    |            | ec (optional)                                |                  |                 | usm-1                                   | u         |
|                                 |           |            | Additional: Organia                          | : Matter %       |                 | dry %                                   |           |
| Very Low Optimal                | Marginal  | Very High  | Soll Test Form 201-a<br>Generated by user II | Copyright ©:     | 2020 Woods En   | nd Laboratorie                          | 51        |
|                                 |           |            |                                              |                  |                 |                                         | -         |

Click here to open the Soil Data Explorer in a new window 2790 Florence Road, Woodbine, X

#### Soil Data Explorer

Instructions

ABOUT BIOCHAR

HOME

The following tabs report data for the uppermost soil horizon. These data may be useful for determining whether blochar application would be beneficial. To view soils data, click a polygon on the map, or enter an address in the search box.

CASE STUDIES TOOLS FIND BIOCHAR

ABOUT THE ATLAS

Soil Series Physical Properties Moisture Properties

**Chemical Properties** 

| Moisture<br>Properties                         | Value | Units                    | Description                                                                                                                                                                                                                                                                                           |
|------------------------------------------------|-------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Saturated<br>conductivity<br>(Ksat)            |       | um/s                     | The amount of water that would move vertically<br>through a unit area of saturated soil in unit time<br>under unit hydraulic gradient.                                                                                                                                                                |
| Water content<br>at field<br>capacity          |       | vol<br>water/vol<br>soil | The volumetric content of soil water retained at a tension of 1/3 bar (33 kPa).                                                                                                                                                                                                                       |
| Water content<br>at permanent<br>wilting point |       | vol<br>water/vol<br>soil | The volumetric content of soil water retained at a tension of 15 bar (1500 kPa).                                                                                                                                                                                                                      |
| Plant-available<br>water content:              |       | vol<br>water/vol<br>soil | The amount of water that an increment of soil<br>depth, inclusive of fragments, can store that is<br>available to plants. AWC is commonly estimated as<br>the difference between the water contents at field<br>capacity and permanent wilting point tension,<br>adjusted for salinity and fragments. |

**Biochar Selection Tool** 

Click below to start the biochar selection tool with data from the currently selected soil series.



| lick here to open the Biochar Selection Tool in a new window                   | Sequester Carbon                      |
|--------------------------------------------------------------------------------|---------------------------------------|
| Instructions Soil Properties Soil Interpretation Biochar Goals Recommendations | Water retention<br>Water infiltration |
| Step 3: Choose three goals for applying biochar.                               | Decrease pH<br>Increase nutrients     |
| First Priority                                                                 | Increase Phosphorus                   |
| Sequester carbon 💌                                                             | Increase potassium                    |
| Second Priority                                                                | Increase calcium                      |
| Increase soil pH                                                               | Reduce salts                          |
| Third Priority                                                                 | Bind Heavy Metals                     |
|                                                                                |                                       |

#### Step 2: Read about the test results to determine your soil's limitations.

Click through each soil property listed in the sidebar.

| Carbon    |  |  |
|-----------|--|--|
| Fertility |  |  |
| Acidity   |  |  |
|           |  |  |

#### Soil Acidity

Your soil pH is 5.8, which is near or below the lower limit of 5.8-7 recommended for optimum growth of the crop selected above. You can increase soil pH by applying lime (calcium carbonate) or liming agents such as a high-ash blochar. Obtain a liming test, such as the SMP or Sikora buffer tests to determine appropriate liming rates.

Below are tables showing lime application rates for Western and Eastern Oregon, based on the SMP buffer test.

Additional liming information for the inland PNW can be found through WSU Extension.

#### Lime requirement test (SMP) interpretation for Western Oregon.

| SMP Test<br>Value | tons/acre to<br>reach pH 5.6 | tons/acre to<br>reach pH 6.0 | tons/acre to<br>reach pH 6.4 |
|-------------------|------------------------------|------------------------------|------------------------------|
| 6.7               | 0                            | 0                            | 0                            |
| 6.6               | 0                            | 0                            | 1                            |
| 6.5               | 0                            | 1                            | 1.7                          |
| 6.4               | 0                            | 1.1                          | 2.2                          |
| 6.3               | 0                            | 1.5                          | 2.7                          |
| 6.2               | 1                            | 2                            | 3.2                          |
| 6.1               | 14                           | 24                           | 37                           |

#### Step 4: Read about which biochars can meet your goals.

Click through each goal in the sidebar. See more about these biochars using the Biochar Property Explorer.

#### Putting it together

A single biochar may not meet all of your goals. Here is a summary of how the biochars in our database meet your needs.

How do you choose? The ranking suggested below is based on assigning 3 points to biochars that meet your first priority, 2 points to those meeting your second priority, and 1 point to those meeting your third priority.

#### **Biochar Recommendations**

| Biochars                        | Priority 1 | Priority 2 | Priority 3 | Rank   |
|---------------------------------|------------|------------|------------|--------|
| Douglas fir 700 C               | Х          |            |            | Second |
| Gasified Juniper                |            |            | Х          |        |
| Gasified Straw<br>AgEnergy      |            |            | Х          |        |
| Hazelnut shells 700 C           | Х          |            |            | Third  |
| Oregon White Oak<br>700 C       | Х          | Х          | Х          | First  |
| Poultry Litter Pellets<br>500 C |            | Х          |            |        |
| Poultry Litter Pellets<br>700 C |            | Х          |            |        |

Last step: Choose goals

#### Next step: Determine amendment rate

### Third Priority Summary

**First Priority** 

Second Priority



#### **Biochar Cost-Benefit Analysis Tool**

1

1.1

| Instructions      | Impact of Bi             | iochar ov        | ver 5 Yea | ars    |        |        |         |
|-------------------|--------------------------|------------------|-----------|--------|--------|--------|---------|
| Biochar Costs     | Include changes in       | n other crop inp | outs?     |        |        |        |         |
| Crop Value        | Discount benefits        | in the future?   |           | 0      |        |        |         |
| Other Crop Inputs |                          |                  |           |        |        |        |         |
| Results           |                          | Year 1           | Year 2    | Year 3 | Year 4 | Year 5 | Total   |
|                   | Biochar Cost             | -\$500           | \$0       | \$0    | \$0    | \$0    | -\$500  |
|                   | Change in Crop<br>Margin | \$297            | \$297     | \$297  | \$297  | \$297  | \$1,485 |
|                   | Net Benefit              | -\$203           | \$297     | \$297  | \$297  | \$297  | \$986   |

Note: This table will only populate after you go through the previous tabs.

## WWW.PNWBIOCHAR.ORG



### Limitations of the Tool



- Map function
- Crops
- Directory
- Biochar database
- Success = yield



#### **Biochar Cost-Benefit Analysis Tool**

.

1.1

| Instructions      | Impact of Bi                             | iochar ov                        | ver 5 Yea              | ars                           |                               |                               |                                   |
|-------------------|------------------------------------------|----------------------------------|------------------------|-------------------------------|-------------------------------|-------------------------------|-----------------------------------|
| Biochar Costs     | Include changes in                       | n other crop inp                 | outs?                  |                               |                               |                               |                                   |
| Crop Value        | Discount benefits                        | in the future?                   |                        | 0                             |                               |                               |                                   |
| Other Crop Inputs |                                          |                                  |                        |                               |                               |                               |                                   |
|                   |                                          |                                  |                        |                               |                               |                               |                                   |
| Results           |                                          | Year 1                           | Year 2                 | Year 3                        | Year 4                        | Year 5                        | Total                             |
| Results           | Biochar Cost                             | <b>Year 1</b><br>-\$500          | <b>Year 2</b><br>\$0   | <b>Year 3</b><br>\$0          | <b>Year 4</b><br>\$0          | <b>Year 5</b><br>\$0          | <b>Total</b><br>-\$500            |
| Results           | Biochar Cost<br>Change in Crop<br>Margin | <b>Year 1</b><br>-\$500<br>\$297 | Year 2<br>\$0<br>\$297 | <b>Year 3</b><br>\$0<br>\$297 | <b>Year 4</b><br>\$0<br>\$297 | <b>Year 5</b><br>\$0<br>\$297 | <b>Total</b><br>-\$500<br>\$1,485 |

Note: This table will only populate after you go through the previous tabs.



### Financial and Technical Assistance for Biochar Application

Soil Carbon Amendment: Conservation Practice Standard 336

Offsets the financial cost of biochar, compost, or biochar:compost mixtures

Changes the value proposition of biochar from yield to conservation

### Expansion of the Biochar Atlas



## Expanding the Biochar Atlas Database

#### Biochar Property Explorer

#### Douglas fir 700 C

|                      | Class | Details                                       | Meaning                                                                                               |
|----------------------|-------|-----------------------------------------------|-------------------------------------------------------------------------------------------------------|
| Carbon Storage Class | 5     | sBC <sub>+100</sub> = 878.5g kg <sup>-1</sup> | Scale from 1 to 5 based on quantity of carbon estimated to persist<br>>100 years.                     |
| Fertilizer Class     | 0     | None                                          | Number of plant nutrients (P, K, S, and Mg) sufficiently available to meet the demand of a corn crop. |
| Liming Class         | 1     | CaCO <sub>3</sub> - eq = 4.4%                 | Scale from 0 to 3 based on CaCO <sub>3</sub> equivalence.                                             |
| Particle Size Class  | Pd    | Blended powder                                | Four main classes: Lump (>50% large particles), Kernel (>50%                                          |

#### **Biochar Classification Tool**



Characterizing more biochar products

#### Select a Biochar

#### Step 4: Read about which biochars can meet your goals.

Click through each goal in the sidebar. See more about these biochars using the Biochar Property Explorer

Second P

| Priority 1: Seque                                                                 | ester carbo                                                                | n                                                                   |                  |               |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------|------------------|---------------|
| Good choices for car<br>thoroughly charred.                                       | bon sequestr                                                               | ation are bioch                                                     | ars that have    | high carbon   |
| The biochars from o                                                               | ur database w                                                              | ith the largest                                                     | content of hig   | hly-charred o |
| <ul> <li>Hazelnut shell</li> <li>Douglas fir 700</li> <li>Oregon White</li> </ul> | s 700 C (sBC <sub>10</sub><br>) C (sBC <sub>100</sub> = 8<br>Oak 700 C (sB | <sub>0</sub> = 915 g/kg)<br>78 g/kg)<br>C <sub>100</sub> = 806 g/kg | g)               |               |
| Putting it together                                                               | r                                                                          |                                                                     |                  |               |
| A single biochar may n                                                            | ot meet all of                                                             | vour goals. He                                                      | re is a summa    | v of how the  |
| needs.                                                                            | or meet all of                                                             | Joan 20013, 110                                                     |                  | y 01 1.0W the |
| How do you choose? The                                                            | he ranking su                                                              | ggested below                                                       | is based on as   | signing 3 poi |
| priority, 2 points to tho                                                         | se meeting yo                                                              | our second pric                                                     | ority, and 1 poi | nt to those m |
| Biochar Recommenda                                                                | ations                                                                     |                                                                     |                  |               |
| Biochars                                                                          | Priority 1                                                                 | Priority 2                                                          | Priority 3       | Rank          |
| Douglas fir 700 C                                                                 | Х                                                                          |                                                                     |                  | First         |
| Hazelnut shells 700 C                                                             | х                                                                          |                                                                     |                  | Second        |
| Oregon White Oak<br>700 C                                                         | х                                                                          |                                                                     |                  | Third         |
| Poultry Litter Pellets<br>350 C                                                   |                                                                            | х                                                                   |                  |               |
| Poultry Litter Pellets                                                            |                                                                            | х                                                                   |                  |               |

Increasing biochar product options that meet grower's soil health goals

Poultry Litter Pellets

#### Find Biochar



Adding biochar producers across the US so growers can order locally

#### pnwbiochar.org

### Get included- Submit a sample to the Biochar Atlas!



| 1:49                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    | •11 5G8 62   |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------|--|--|--|
| 🗸 Agenda                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Details            | <            |  |  |  |
| Biochar properties and end uses<br>Wednesday, February 14, 2024<br>2:30 PM - 4:25 PM<br>Ballroom A03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                    |              |  |  |  |
| Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | i to my Agenda (Zi | 6 attending) |  |  |  |
| Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | I to My Agenda (20 | 6 attending) |  |  |  |
| C Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | II. Polls          | Chat         |  |  |  |
| Added     Added     Personal Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ke                 | Chat         |  |  |  |
| Added      Control      Co | ke Take Notes      | Chat         |  |  |  |

Matching biochar to soil health management goals with The Biochar Atlas's Biochar Selection Tool

2:30 - 2:55 PM

The Biochar Atlas's Biochar Selection Tool is an online resource that helps growers find biochar products that best address their soil health management goals....

Location: Ballroom A03 Speaker: Rachel Baschieri

- Sample analysis is free
- Biochar product info and analysis results are added to the Biochar Atlas database
- Analysis results are not applicable toward USDA or IBI certification

Contact Rachel Baschieri for details: <u>rachel.baschieri@usda.gov</u> (541)738-4168

Or visit https://www.pnwbiochar.org/home/sub mit\_sample/ Expansion of the Biochar Atlas



To improve agricultural yields and address resource concerns

## But....I need information now!



## But....I need information now!



## **3R Calculator**

#### **Certificate of Analysis**

|                | International BioChar Initiative (IBI) Laboratory Tests for Certification Program |            |               |                 |             |                        |                |                |              |
|----------------|-----------------------------------------------------------------------------------|------------|---------------|-----------------|-------------|------------------------|----------------|----------------|--------------|
|                |                                                                                   |            | Dry Basis U   | nless Stated:   | Range       | Units                  | Method         |                |              |
| Moisture (time | e of analysis)                                                                    |            |               | 50.2            |             | % wet wt.              | ASTM D176      | 2-84 (105c)    |              |
| Bulk Density   |                                                                                   |            |               | 11.3            |             | lb/cu ft               |                |                |              |
| Organic Carb   | on                                                                                |            |               | 83.0            |             | % of total dry mass    | Dry Combus     | st-ASTM D 4    | 373          |
| Hydrogen/Ca    | rbon (H:C)                                                                        |            |               | 0.57            | 0.7 Max     | Molar Ratio            | H dry comb     | ustion/C(abo   | ove)         |
| Total Ash      |                                                                                   |            |               | 2.4             |             | % of total dry mass    | ASTM D-17      | 62-84          |              |
| Total Nitroger | า                                                                                 |            |               | 0.41            |             | % of total dry mass    | Dry Combus     | stion          |              |
| pH value       |                                                                                   |            |               | 9.24            |             | units                  | 4.11USCC:      | dil. Rajkovicl | า            |
| Electrical Cor | nductivity (EC20 v                                                                | v/w)       |               | 0.237           |             | dS/m                   | 4.10USCC:      | dil. Rajkovicl | า            |
| Liming (neut.  | Value as-CaCO3                                                                    | 5)         |               | 2.5             |             | %CaCO3                 | AOAC 955.0     | 01             |              |
| Carbonates (a  | as-CaCO3)                                                                         |            |               | 2.1             |             | %CaCO3                 | ASTM D 43      | 73             |              |
| Butane Act.    |                                                                                   |            |               | 2.5             |             | g/100g dry             | ASTM D 57      | 42-95          |              |
| Surface Area   | Correlation                                                                       |            |               | 213             |             | m2/g dry               | G              |                |              |
| All units mg/k | g dry unless state                                                                | ed:        | Range of      | Reporting       |             | Particle Size Distribu | ition          |                |              |
|                | F                                                                                 | Results    | Max. Levels   | Limit (ppm)     | Method      |                        | Results        | Units          | Method       |
| Arsenic        | (As)                                                                              | ND         | 13 to 100     | 0.44            | J           | < 0.5mm                | 7.8            | percent        | F            |
| Cadmium        | (Cd)                                                                              | 0.19       | 1.4 to 39     | 0.18            | J           | 0.5-1mm                | 5.6            | percent        | F            |
| Chromium       | (Cr)                                                                              | 4.6        | 93 to 1200    | 0.44            | J           | 1-2mm                  | 9.2            | percent        | F            |
| Cobalt         | (Co)                                                                              | ND         | 34 to 100     | 0.44            | J           | 2-4mm                  | 16.9           | percent        | F            |
| Copper         | (Cu)                                                                              | 9.6        | 143 to 6000   | 0.44            | J           | 4-8mm                  | 27.6           | percent        | F            |
| Lead           | (Pb)                                                                              | 0.46       | 121 to 300    | 0.18            | J           | 8-16mm                 | 26.2           | percent        | F            |
| Molybdenum     | (Mo)                                                                              | 0.60       | 5 to 75       | 0.44            | J           | 16-25mm                | 6.5            | percent        | F            |
| Mercury        | (Hg)                                                                              | ND         | 1 to 17       | 0.001           | EPA 7471    | 25-50mm                | 0.0            | percent        | F            |
| Nickel         | (Ni)                                                                              | 4.7        | 47 to 420     | 0.44            | J           | >50mm                  | 0.0            | percent        | F            |
| Selenium       | (Se)                                                                              | ND         | 2 to 200      | 0.88            | J           | Basic Soil Enhancen    | nent Propertie | s              |              |
| Zinc           | (Zn)                                                                              | 35.6       | 416 to 7400   | 0.88            | J           | Total (K)              | 3985           | mg/kg          | E            |
| Boron          | (B)                                                                               | 8.1        | Declaration   | 4.4             | TMECC       | Total (P)              | 460            | mg/kg          | E            |
| Chlorine       | (CI)                                                                              | 118        | Declaration   | 20.0            | TMECC       | Ammonia (NH4-N)        | 7.1            | mg/kg          | Α            |
| Sodium         | (Na)                                                                              | ND         | Declaration   | 440             | E           | Nitrate (NO3-N)        | 3.0            | mg/kg          | Α            |
| Iron           | (Fe)                                                                              | 1566       | Declaration   | 22.0            | Е           | Organic (Org-N)        | 4048           | mg/kg          | Calc.        |
| Manganese      | (Mn)                                                                              | 233        | Declaration   | 0.44            | J           | Volatile Matter        | 22.2           | percent dw     | D            |
| * "ND" stands  | for "not detected                                                                 | l" which m | eans the resu | It is below the | reporting   | imit.                  |                |                |              |
| Method A       | Rayment & Higg                                                                    | inson      | G             | Butane Activ    | ity Surface | Area Correlation Bas   | ed on McLau    | ghlin, Shield  | s, Jagiello, |
| D              | ASTM D1762-84                                                                     | 1          |               | & Thiele's 20   | 12 paper: A | analytical Options for | Biochar Adso   | rption and S   | urface Area  |
| E              | EPA3050B/EPA                                                                      | 6010       | J             | EPA3050B/E      | PA 6020     |                        |                |                |              |
| F              | ASTM D 2862 G                                                                     | iranular   |               |                 |             |                        |                |                |              |

#### Does it Meet Standard?

| Variable                   | Value  | Unit                | Meets NRCS 336 Standard |
|----------------------------|--------|---------------------|-------------------------|
| Bulk Density               | 11.3   | lbs/ft <sup>3</sup> | N/A                     |
| Moisture Content           | 50.20% | Percent             | N/A                     |
| Organic Carbon (Corg)      | 83.00% | Percent             | Meets Criteria          |
| H: Corg                    | 0.57   | Ratio               | Meets Criteria          |
| рН                         | 9.24   | pH Units            | Reported as Needed      |
| Liming, CaCO₃ equivalent % | 2.50%  | Percent             | Reported as Needed      |
| Ash                        | 2.40%  | Percent             | Reported as Needed      |
| Nitrogen                   | 4100   | ppm (dry weight)    | Reported as Needed      |
| Phosphorous                | 460    | ppm (dry weight)    | Reported as Needed      |
| Potassium                  | 3985   | ppm (dry weight)    | Reported as Needed      |
| Arsenic, As                | 0      | ppm (dry weight)    | Meets Criteria          |
| Cadmium, Cd                | 0.19   | ppm (dry weight)    | Meets Criteria          |
| Calcium, Ca                |        | ppm (dry weight)    | Needs to be Reported    |
| Chromium, Cr               | 4.6    | ppm (dry weight)    | Meets Criteria          |
| Copper, Cu                 | 9.6    | ppm (dry weight)    | Meets Criteria          |
| Lead, Pb                   | 0.46   | ppm (dry weight)    | Meets Criteria          |
| Molybdenum, Mo             | 0.6    | ppm (dry weight)    | Reported as Needed      |
| Mercury, Hg                | 0      | ppm (dry weight)    | Meets Criteria          |
| Magnesium, Mg              |        | ppm (dry weight)    | Needs to be Reported    |
| Nickel, Ni                 | 4.7    | ppm (dry weight)    | Meets Criteria          |
| Selenium, Se               | 0      | ppm (dry weight)    | Meets Criteria          |
| Zinc, Zn                   | 35.6   | ppm (dry weight)    | Meets Criteria          |
| Boron, B                   | 8.1    | ppm (dry weight)    | N/A                     |
| Chlorine, Cl               | 118    | ppm (dry weight)    | N/A                     |
| Sulfur, S                  |        | ppm (dry weight)    | N/A                     |
| Sodium, Na                 | 0      | ppm (dry weight)    | N/A                     |
| Aluminium, Al              | 25     | ppm (dry weight)    | N/A                     |
| Iron, Fe                   | 1566   | ppm (dry weight)    | N/A                     |
| Manganese, Mn              | 233    | ppm (dry weight)    | N/A                     |

- Excel-Based
- Determines compliance
- Determines carbon and nutrient outcomes

#### Soil Fertility per yd<sup>3</sup> Biochar

| Nutrient    | Biochar Characteristics          | Unit      |
|-------------|----------------------------------|-----------|
|             |                                  |           |
| Limo        | CaCO <sub>3</sub> equivalent %   | 2.50%     |
| Linte       | Tons CaCO₃e per yard biochar     | 0.0038138 |
| Nitrogen    | N ppm                            | 4100.00   |
| U           | lbs N /yd <sup>3</sup> biochar   | 1.25091   |
| Dhaamhamus  | P ppm                            | 20.00     |
| Phosphorus  | lbs P / yd <sup>3</sup> biochar  | 0.006102  |
| Potassium   | K ppm                            | 3705      |
| Polassium   | lbs K / yd <sup>3</sup> biochar  | 1.1303955 |
| Calcium     | Total Ca ppm                     | 0         |
| Calcium     | lbs Ca / yd <sup>3</sup> biochar | 0         |
| Manuali     | Total Mg ppm                     | 0         |
| Magnesium   | lbs Mg / yd <sup>3</sup> biochar | 0         |
| Culture     | Total S ppm                      | 0         |
| Sultur      | lbs S / yd <sup>3</sup> biochar  | 0         |
|             | Total Na ppm                     | 0         |
| Sodium (Na) | lbs Na / yd <sup>3</sup> biochar | 0         |
| Chloring    | Total Cl ppm                     | 118       |
| Chiorine    | lbs Cl / yd <sup>3</sup> biochar | 0.0360018 |
| A           | Total Al ppm                     | 25        |
| Aluminum    | lbs Al / yd <sup>3</sup> biochar | 0.0076275 |
| <b>C</b>    | Total Cu ppm                     | 9.6       |
| Copper      | lbs Cu / yd <sup>3</sup> biochar | 0.002929  |
| 7:00        | Total Zn ppm                     | 35.6      |
| ZINC        | lbs Zn / yd <sup>3</sup> biochar | 0.0108616 |
| lucu        | Total Fe ppm                     | 1566      |
| iron        | lbs Fe / yd <sup>3</sup> biochar | 0.4777866 |
|             | Total Mn ppm                     | 233       |
| Manganese   | lbs Mn / yd <sup>3</sup> biochar | 0.0710883 |
|             | Total B ppm                      | 8.1       |
| Boron       | lbs B / yd <sup>3</sup> biochar  | 0.0024713 |

#### Soil Fertility per Application (yd<sup>3</sup>)

| Liming and NPK Outcomes per acre            |           |               |
|---------------------------------------------|-----------|---------------|
| yards biochar applied per acre              | 20        |               |
| Percent of field amended with biochar       | 30.00%    | )             |
|                                             |           |               |
|                                             | Total lbs | Total lbs per |
| Nutrient                                    | per acre  | amended acre  |
| Liming equivalent, CaCO <sub>3</sub> (tons) | 0.08      | 0.25          |
| N added                                     | 25.02     | 83.39         |
| P added                                     | 0.12      | 0.41          |
| P <sub>2</sub> O <sub>5</sub> added         | 0.28      | 0.93          |
| K added                                     | 22.61     | 75.36         |
| K <sub>2</sub> O added                      | 27.23     | 90.78         |
| Ca added                                    | 0.00      | 0.00          |
| Mg added                                    | 0.00      | 0.00          |
| S added                                     | 0.00      | 0.00          |
| SO <sub>4</sub> added                       | 0.00      | 0.00          |
| Na added                                    | 0.00      | 0.00          |
| CI added                                    | 0.72      | 2.40          |
| Al added                                    | 0.15      | 0.51          |
| Cu added                                    | 0.06      | 0.20          |
| Zn added                                    | 0.22      | 0.72          |
| Fe added                                    | 9.56      | 31.85         |
| Mn added                                    | 1.42      | 4.74          |
| B added                                     | 0.05      | 0.16          |

Soil fertility per yd3

Soil Fertility per ton

Biochar Application Rate Calculator

Excel-Based

- Determines compliance
- Determines
   C and
   nutrient
   outcomes

#### **Soil Organic Carbon inputs and outcomes**



- Excel-Based
- Determines compliance
- Determines
   C and
   nutrient
   outcomes

| % So | oil Organic Carbon outcomes per app      | Carbon outcomes per application (wet ton) under different cultivation depths and application rates |       |       |       |       |
|------|------------------------------------------|----------------------------------------------------------------------------------------------------|-------|-------|-------|-------|
|      | Biochar tons/acre (applied as delivered) | 1                                                                                                  | 2     | 5     | 10    | 20    |
|      | 3                                        | 0.09%                                                                                              | 0.18% | 0.46% | 0.91% | 1.839 |
|      | 6.7                                      | 0.04%                                                                                              | 0.08% | 0.20% | 0.41% | 0.82% |
|      | 12                                       | 0.02%                                                                                              | 0.05% | 0.11% | 0.23% | 0.46% |
|      | 18                                       | 0.02%                                                                                              | 0.03% | 0.08% | 0.15% | 0.309 |
|      | 24                                       | 0.01%                                                                                              | 0.02% | 0.06% | 0.11% | 0.23% |





- Excel-Based
- Determines compliance
- Determines
   C and
   nutrient
   outcomes

| Variable                             | Value                                       | Unit                     | Meets NRCS 336 Standa    | rd                             |
|--------------------------------------|---------------------------------------------|--------------------------|--------------------------|--------------------------------|
| Bulk Density                         | 11.3                                        | lbs/ft3                  | N/A                      |                                |
| Moisture Content                     | 50.20%                                      | Percent                  | N/A                      |                                |
| Organic Carbon (Corg)                | 83.00%                                      | Percent                  | Meets Criteria           |                                |
| H: Corg                              | 0.57                                        | Ratio                    | Meets Criteria           |                                |
| pH                                   | 9.24                                        | pH Units                 | Reported as Needed       |                                |
| Liming, CaCO <sub>3</sub> equivalent | 2.50%                                       | Percent                  | Reported as Needed       |                                |
| Ash                                  | 2.40%                                       | Percent                  | Reported as Needed       |                                |
| Nitrogen                             | 4100                                        | ppm (dry weight)         | Reported as Needed       |                                |
| Phosphorous                          | 20                                          | ppm (dry weight)         | Reported as Needed       |                                |
| Potassium                            | 3705                                        | ppm (dry weight)         | Reported as Needed       |                                |
| Arsenic, As                          | C                                           | ppm (dry weight)         | Meets Criteria           |                                |
| Cadmium, Cd                          | 0.19                                        | ppm (dry weight)         | Meets Criteria           |                                |
| Calcium, Ca                          | C                                           | ppm (dry weight)         | Needs to be Reported     |                                |
| Chromium, Cr                         | 4.6                                         | ppm (dry weight)         | Meets Criteria           |                                |
| Copper, Cu                           | 9.6                                         | ppm (dry weight)         | Meets Criteria           |                                |
| Lead, Pb                             | 0.46                                        | ppm (dry weight)         | Meets Criteria           |                                |
| Molybdenum, Mo                       | 0.6                                         | ppm (dry weight)         | Reported as Needed       |                                |
| Mercury, Hg                          | C                                           | ppm (dry weight)         | Meets Criteria           |                                |
| Magnesium, Mg                        | C                                           | ppm (dry weight)         | Needs to be Reported     |                                |
| Nickel, Ni                           | 4.7                                         | ppm (dry weight)         | Meets Criteria           |                                |
| Selenium, Se                         | C                                           | ppm (dry weight)         | Meets Criteria           |                                |
| Zinc, Zn                             | 35.6                                        | ppm (dry weight)         | Meets Criteria           |                                |
| Boron, B                             | 8.1                                         | ppm (dry weight)         | N/A                      |                                |
| Chlorine, Cl                         | 118                                         | ppm (dry weight)         | N/A                      |                                |
| Sulfur, S                            | C                                           | ppm (dry weight)         | N/A                      |                                |
| Sodium, Na                           | C                                           | ppm (dry weight)         | N/A                      |                                |
| Aluminium, Al                        | 25                                          | ppm (dry weight)         | N/A                      |                                |
| Iron, Fe                             | 1566                                        | ppm (dry weight)         | N/A                      |                                |
| Manganese, Mn                        | 233                                         | ppm (dry weight)         | N/A                      |                                |
| % SOC outcomes per applicatio        | n                                           |                          |                          |                                |
| Cultivation specs                    | Descent common sublicated                   | 1                        |                          |                                |
| nichesdeptit<br>g                    | n a                                         |                          |                          |                                |
| How much biochar do you need         | l to achive a specific increase in soil org | anic carbon?             |                          |                                |
| % SOC increase desired               | Tons Corg needed                            | Tons Biochar required (d | Tons Biochar required (w | yd <sup>3</sup> required (wet) |
| 1.00%                                | 3.62                                        | 4.36                     | 8.75                     |                                |
|                                      |                                             |                          |                          |                                |
| How much soil carbon will you a      | pply given a specific application rate?     | (in tons)                | 1                        |                                |
| Tons Biochar (wet)                   | Tons Corg applied                           | Achieved Rate (SOC%)     |                          |                                |
| 4                                    | 1.65                                        | 0.46%                    |                          |                                |

| łow much soil carbon will you apply given a specific application rate? (in yards) |                    |                   |                      |  |  |  |
|-----------------------------------------------------------------------------------|--------------------|-------------------|----------------------|--|--|--|
| /d <sup>3</sup> biochar                                                           | Tons Biochar (wet) | Tons Corg applied | Achieved Rate (SOC%) |  |  |  |
| 20                                                                                | 6.13               | 2.53              | 0.70%                |  |  |  |

| Liming and NPK Outcomes per acre            |               |                      |
|---------------------------------------------|---------------|----------------------|
| Tons biochar applied per acre (wet)         | 0             |                      |
| Percent of field cultivated                 | 100.00%       |                      |
|                                             | 0             |                      |
| Nutrient                                    | Total lbs per | lbs/ cultivated acre |
| Liming equivalent, CaCO <sub>3</sub> (tons) | 0             | 0                    |
| N added                                     | 0             | ç                    |
| P added                                     | 0.00          | 0                    |
| P2O5 added                                  | 0.00          | 0                    |
| K added                                     | 0.00          | 0                    |
| K <sub>2</sub> O added                      | 0.00          | 0                    |
| Ca added                                    | 0.00          | 0                    |
| Mg added                                    | 0.00          | 0                    |
| S added                                     | 0.00          | 0                    |
| SO₄ added                                   | 0.00          | 0                    |
| Na added                                    | 0.00          | 0                    |
| Cl added                                    | 0.00          | 0                    |
| Al added                                    | 0.00          | 0                    |
| Cu added                                    | 0.00          | 0                    |
| Zn added                                    | 0.00          | 0                    |
| Fe added                                    | 0.00          | 0                    |
| Mn added                                    | 0.00          | 0                    |
| B added                                     | 0.00          | 0                    |

| Liming and NPK Outcomes per acre |           |                      |
|----------------------------------|-----------|----------------------|
| yards biochar applied per acre   | 6.6       |                      |
| Percent of field cultivated      | 60.00%    |                      |
|                                  |           | -                    |
| Nutrient                         | Total lbs | lbs/ cultivated acre |
| Liming equivalent, CaCO3 (tons)  | 0.08      | 0.25                 |
| N added                          | 25.02     | 83.39                |
| P added                          | 0.12      | 0.41                 |
| P2O5 added                       | 0.28      | 0.93                 |
| K added                          | 22.61     | 75.36                |
| K2O added                        | 27.23     | 90.78                |
| Ca added                         | 0.00      | 0.00                 |
| Mg added                         | 0.00      | 0.00                 |
| Sadded                           | 0.00      | 0.00                 |
| SO4 added                        | 0.00      | 0.00                 |
| Na added                         | 0.00      | 0.00                 |
| Cl added                         | 0.72      | 2.40                 |
| Al added                         | 0.15      | 0.51                 |
| Cu added                         | 0.06      | 0.20                 |
| Zn added                         | 0.22      | 0.72                 |
| Fe added                         | 9.56      | 31.85                |
| Mn added                         | 1.42      | 4.74                 |
| Badded                           | 0.05      | 0.16                 |

- Excel-Based
- Determines compliance
- Determines
   C and
   nutrient
   outcomes

#### **Certificate of Analysis**

|                                    |                 | Internation  | al BioChar In | itiative (IBI) I | aboratory               | Tests for Certificat              | ion Program             |                |              |
|------------------------------------|-----------------|--------------|---------------|------------------|-------------------------|-----------------------------------|-------------------------|----------------|--------------|
|                                    |                 |              | Dry Basis U   | nless Stated:    | Range                   | Units                             | Method                  |                |              |
| Moisture (time                     | e of analysis)  |              |               | 50.2             |                         | % wet wt.                         | ASTM D17                | 62-84 (105c)   |              |
| Bulk Density                       |                 |              |               | 11.3             |                         | lb/cu ft                          |                         |                |              |
| Organic Carb                       | on              |              |               | 83.0             |                         | % of total dry mass               | Dry Combu               | st-ASTM D 4    | 373          |
| Hydrogen/Ca                        | rbon (H:C)      |              |               | 0.57             | 0.7 Max                 | Molar Ratio                       | H dry comb              | oustion/C(abo  | ive)         |
| Total Ash                          |                 |              |               | 2.4              |                         | % of total dry mass               | ASTM D-17               | 762-84         |              |
| Total Nitroger                     | n               |              |               | 0.41             |                         | % of total dry mass               | Dry Combu               | istion         |              |
| pH value 9.24 ur                   |                 | units        | 4.11USCC      | dil. Rajkovich   | ı                       |                                   |                         |                |              |
| Electrical Cor                     | nductivity (EC2 | 0 w/w)       |               | 0.237            |                         | dS/m                              | 4.10USCC:dil. Rajkovich |                | ı            |
| Liming (neut.                      | Value as-CaC    | O3)          |               | 2.5              |                         | %CaCO3                            | AOAC 955.01             |                |              |
| Carbonates (a                      | as-CaCO3)       |              |               | 2.1              |                         | %CaCO3                            | ASTM D 4373             |                |              |
| Butane Act.                        |                 |              |               | 2.5              |                         | g/100g dry                        | ASTM D 57               | 742-95         |              |
| Surface Area                       | Correlation     |              |               | 213              |                         | m2/g dry                          | G                       |                |              |
| All units mg/kg dry unless stated: |                 | Range of     | Reporting     |                  | Particle Size Distribut | ution                             |                         |                |              |
|                                    |                 | Results      | Max. Levels   | Limit (ppm)      | Method                  |                                   | Results                 | Units          | Method       |
| Arsenic                            | (As)            | ND           | 13 to 100     | 0.44             | J                       | < 0.5mm                           | 7.                      | 8 percent      | F            |
| Cadmium                            | (Cd)            | 0.19         | 1.4 to 39     | 0.18             | J                       | 0.5-1mm                           | 5.                      | 6 percent      | F            |
| Chromium                           | (Cr)            | 4.6          | 93 to 1200    | 0.44             | J                       | 1-2mm                             | 9.                      | 2 percent      | F            |
| Cobalt                             | (Co)            | ND           | 34 to 100     | 0.44             | J                       | 2-4mm                             | 16.                     | 9 percent      | F            |
| Copper                             | (Cu)            | 9.6          | 143 to 6000   | 0.44             | J                       | 4-8mm                             | 27.                     | 6 percent      | F            |
| Lead                               | (Pb)            | 0.46         | 121 to 300    | 0.18             | J                       | 8-16mm                            | 26.                     | 2 percent      | F            |
| Molybdenum                         | (Mo)            | 0.60         | 5 to 75       | 0.44             | J                       | 16-25mm                           | 6.                      | 5 percent      | F            |
| Mercury                            | (Hg)            | ND           | 1 to 17       | 0.001            | EPA 7471                | 25-50mm                           | 0.                      | 0 percent      | F            |
| Nickel                             | (Ni)            | 4.7          | 47 to 420     | 0.44             | J                       | >50mm                             | 0.                      | 0 percent      | F            |
| Selenium                           | (Se)            | ND           | 2 to 200      | 0.88             | J                       | Basic Soil Enhancement Properties |                         |                |              |
| Zinc                               | (Zn)            | 35.6         | 416 to 7400   | 0.88             | J                       | Total (K)                         | 398                     | 5 mg/kg        | E            |
| Boron                              | (B)             | 8.1          | Declaration   | 4.4              | TMECC                   | Total (P)                         | 46                      | 0 mg/kg        | E            |
| Chlorine                           | (CI)            | 118          | Declaration   | 20.0             | TMECC                   | Ammonia (NH4-N)                   | 7.                      | 1 mg/kg        | A            |
| Sodium                             | (Na)            | ND           | Declaration   | 440              | E                       | Nitrate (NO3-N)                   | 3.                      | 0 mg/kg        | A            |
| Iron                               | (Fe)            | 1566         | Declaration   | 22.0             | E                       | Organic (Org-N)                   | 404                     | 8 mg/kg        | Calc.        |
| Manganese                          | (Mn)            | 233          | Declaration   | 0.44             | J                       | Volatile Matter                   | 22.                     | 2 percent dw   | D            |
| * "ND" stands                      | for "not detect | ted" which m | eans the resu | It is below the  | e reporting l           | imit.                             |                         |                |              |
| Method A                           | Rayment & Hi    | igginson     | G             | Butane Activ     | ity Surface             | Area Correlation Bas              | ed on McLau             | ughlin, Shield | s, Jagiello, |
| D                                  | ASTM D1762-     | -84          |               | & Thiele's 20    | 12 paper: A             | nalytical Options for             | Biochar Adso            | orption and S  | urface Area  |
| E                                  | EPA3050B/EF     | PA 6010      | J             | EPA3050B/E       | PA 6020                 |                                   |                         |                |              |
| F                                  | ASTM D 2862     | Granular     |               |                  |                         |                                   |                         |                |              |

#### Does it Meet Standard?

#### **Biochar Characteristics Input**

| Variable                     | Value  | Unit                | Meets NRCS 336 Standard |  |
|------------------------------|--------|---------------------|-------------------------|--|
| Bulk Density                 | 11.3   | lbs/ft <sup>3</sup> | N/A                     |  |
| Moisture Content             | 50.20% | Percent             | Meets Criteria          |  |
| Organic Carbon (Corg)        | 83.00% | Percent             | Meets Criteria          |  |
| H: Corg                      | 0.57   | Ratio               | Meets Criteria          |  |
| Electrical Conductivity (EC) | 0.24   | dS/m or mS/cm       | Reported as Needed      |  |
| рН                           | 9.24   | pH Units            | Reported as Needed      |  |
| Liming, CaCO₃ equivalent %   | 2.50%  | Percent             | Reported as Needed      |  |
| Ash                          | 2.40%  | Percent             | Reported as Needed      |  |
| Nitrogen                     | 4100   | ppm (dry weight)    | Reported as Needed      |  |
| Phosphorous                  | 460    | ppm (dry weight)    | Reported as Needed      |  |
| Potassium                    | 3,985  | ppm (dry weight)    | Reported as Needed      |  |
| Arsenic, As                  | 0      | ppm (dry weight)    | Meets Criteria          |  |
| Cadmium, Cd                  | 0.19   | ppm (dry weight)    | Meets Criteria          |  |
| Calcium, Ca                  |        | ppm (dry weight)    | Needs to be Reported    |  |
| Chromium, Cr                 | 4.6    | ppm (dry weight)    | Meets Criteria          |  |
| Copper, Cu                   | 9.6    | ppm (dry weight)    | Meets Criteria          |  |
| Lead, Pb                     | 0.46   | ppm (dry weight)    | Meets Criteria          |  |
| Molybdenum, Mo               | 0.6    | ppm (dry weight)    | Reported as Needed      |  |
| Mercury, Hg                  | 0      | ppm (dry weight)    | Meets Criteria          |  |
| Magnesium, Mg                |        | ppm (dry weight)    | Needs to be Reported    |  |
| Nickel, Ni                   | 4.7    | ppm (dry weight)    | Meets Criteria          |  |
| Selenium, Se                 | 0      | ppm (dry weight)    | Meets Criteria          |  |
| Zinc, Zn                     | 35.4   | ppm (dry weight)    | Meets Criteria          |  |
| Boron, B                     | 8.1    | ppm (dry weight)    | N/A                     |  |
| Chlorine, Cl                 | 118    | ppm (dry weight)    | N/A                     |  |
| Sulfur, S                    |        | ppm (dry weight)    | N/A                     |  |
| Sodium, Na                   | 0      | ppm (dry weight)    | N/A                     |  |
| Aluminium, Al                | 25     | ppm (dry weight)    | N/A                     |  |
| Iron, Fe                     | 1566   | ppm (dry weight)    | N/A                     |  |
| Manganese, Mn                | 7554   | ppm (dry weight)    | N/A                     |  |
| Feedstock                    |        | none                | Needs to be Reported    |  |
| Production Temperature       |        | degrees C           | Needs to be Reported    |  |

Biochar Application Rate Calculator What it can't do:

- Choose Goals
- Compare or find biochars
- Does not integrate soil or crop needs

### The Gady Family invested in on-farm power



### Spring Wheat, Washington





Goals: Increase pH, sequester C, increase water



Ammonia-based fertilizers acidify soils



### Can biochar can be used to increase soil pH?



- Kentucky Bluegrass Seed Screening Biochar (12 - 16% CaCO<sub>3</sub>-eq) 8 tons/acre
- Hydrated lime (136% CaCO<sub>3</sub>-eq) 1 ton/acre
- Non-amended Control

Rototilled 0-10 cm depth

## Biochar improved yield 2.88X!

- Biochar increased yield by 2.88×
- Lime increased yield by 1.88×
- Both amendments increased pH similarly
- Both decreased soluble aluminum, but lime did better than biochar





#### **Biochar Characteristics Input**

| Variable                     | Value      | Unit                | Meets NRCS 336 Standard |
|------------------------------|------------|---------------------|-------------------------|
| Bulk Density                 |            | lbs/ft <sup>3</sup> | N/A                     |
| Moisture Content             | 20.00%     | Percent             | Meets Criteria          |
| Organic Carbon (Corg)        | 45.00%     | Percent             | Meets Criteria          |
| H: Corg                      | 0,02       | Ratio               | Meets Criteria          |
| Electrical Conductivity (EC) | 2.98       | dS/m or mS/cm       | Reported as Needed      |
| pН                           | 10.20      | pH Units            | Reported as Needed      |
| Liming, CaCO₃ equivalent %   | 17.00%     | Percent             | Reported as Needed      |
| Ash                          | 33.00%     | Percent             | Reported as Needed      |
| Nitrogen                     | 22000      | ppm (dry weight)    | Reported as Needed      |
| Phosphorous                  | 15320      | ppm (dry weight)    | Reported as Needed      |
| Potassium                    | 36,358     | ppm (dry weight)    | Reported as Needed      |
| Arsenic, As                  | 0          | ppm (dry weight)    | Meets Criteria          |
| Cadmium, Cd                  | 0          | ppm (dry weight)    | Meets Criteria          |
| Calcium, Ca                  | 13300      | ppm (dry weight)    | Reported as Needed      |
| Chromium, Cr                 | 0          | ppm (dry weight)    | Meets Criteria          |
| Copper, Cu                   | 36         | ppm (dry weight)    | Meets Criteria          |
| Lead, Pb                     | 0          | ppm (dry weight)    | Meets Criteria          |
| Molybdenum, Mo               | 0          | ppm (dry weight)    | Reported as Needed      |
| Mercury, Hg                  | 0          | ppm (dry weight)    | Meets Criteria          |
| Magnesium, Mg                | 6342       | ppm (dry weight)    | Reported as Needed      |
| Nickel, Ni                   | 0          | ppm (dry weight)    | Meets Criteria          |
| Selenium, Se                 | 0          | ppm (dry weight)    | Meets Criteria          |
| Zinc, Zn                     | 143        | ppm (dry weight)    | Meets Criteria          |
| Boron, B                     |            | ppm (dry weight)    | N/A                     |
| Chlorine, Cl                 |            | ppm (dry weight)    | N/A                     |
| Sulfur, S                    |            | ppm (dry weight)    | N/A                     |
| Sodium, Na                   | 411        | ppm (dry weight)    | N/A                     |
| Aluminium, Al                | 854        | ppm (dry weight)    | N/A                     |
| Iron, Fe                     | 1125       | ppm (dry weight)    | N/A                     |
| Manganese, Mn                | 7554       | ppm (dry weight)    | N/A                     |
| Feedstock                    | seed waste | none                | FALSE                   |
| Production Temperature       | 1100       | degrees C           | Reported as Needed      |





#### Soil Fertility per biochar application (wet weight)

| Liming and NPK Outcomes per acre      |           |               |
|---------------------------------------|-----------|---------------|
| Tons biochar applied per acre (wet)   | 8         |               |
| Percent of field amended with biochar | 100.00%   |               |
|                                       |           | _             |
|                                       | Total lbs | Total lbs per |
| Nutrient                              | per acre  | amended acre  |
| Liming equivalent, CaCO <sub>3</sub>  | 2176.00   | 2176.0        |
| N added                               | 281.60    | 281.6         |
| P added                               | 196.10    | 196.1         |
| P <sub>2</sub> O <sub>5</sub> added   | 449.06    | 449.0         |
| K added                               | 465.38    | 465.3         |
| K <sub>2</sub> O added                | 560.60    | 560.6         |
| Ca added                              | 170.24    | 170.24        |
| Mg added                              | 81.18     | 81.1          |
| S added                               | 0.00      | 0.0           |
| SO <sub>4</sub> added                 | 0.00      | 0.0           |
| Na added                              | 5.26      | 5.2           |
| Cl added                              | 0.00      | 0.0           |
| Al added                              | 10.93     | 10.93         |
| Cu added                              | 0.46      | 0.4           |
| Zn added                              | 1.83      | 1.8           |
| Fe added                              | 14.40     | 14.40         |
| Mn added                              | 96.69     | 96.6          |
| B added                               | 0.00      | 0.0           |

| Cultivation specs                |         |                                            |                             |                             |
|----------------------------------|---------|--------------------------------------------|-----------------------------|-----------------------------|
| Incorporation depth (inches)     |         | Percent of field amended with biochar      |                             |                             |
|                                  | 5       | 100%                                       |                             |                             |
|                                  |         |                                            | •                           |                             |
| How much biochar do you need to  | o achiv | ve a specific increase in soil organic car | oon?                        |                             |
|                                  |         |                                            |                             |                             |
| % SOC increase desired           |         | Tons Corg needed                           | Tons Biochar required (dry) | Tons Biochar required (wet) |
| 1.                               | .00%    | 8.50                                       | 18.88                       | 23.60                       |
|                                  |         |                                            |                             |                             |
| How much soil carbon will you ap | ply giv | ven a specific application rate? (in tons) | 1                           |                             |
| Tons Biochar (wet)               |         | Tons Corg applied                          | Achieved Rate (SOC%)        |                             |
|                                  | 8       | 2.88                                       | 0.34%                       |                             |
|                                  |         |                                            |                             |                             |

Biochar Application Rate Calculator

• Excel-Based

- Determines compliance
- Determines carbon and nutrient outcomes

## **ADDITIONAL TOOLS**



http://www.pnwbiochar.org/tools/tools\_336

| Frequently Asked Questions About Biochar Applied                                   | to Soil |
|------------------------------------------------------------------------------------|---------|
|                                                                                    |         |
| Contents                                                                           |         |
| Introduction to Biochar                                                            |         |
| Q1. What is biochar?                                                               |         |
| Q2. How is it made?                                                                |         |
| Q3. What is biochar made from?                                                     |         |
| Q4. What is a feedstock?                                                           |         |
| Q5. How much biochar would be produced by processing 1 ton of biomass?             |         |
| Q6. Are there coproducts in biochar production?                                    |         |
| Q7. Is biochar different from charcoal?                                            |         |
| Q8. Why has biochar adoption been slow?                                            |         |
| Q9. Is biochar a 'silver-bullet' solution?                                         |         |
| Q10. What is the half-life of biochar?                                             |         |
| Biochar Field Application                                                          |         |
| Q1. How much do I apply?                                                           |         |
| Q2. How and where do I apply it?                                                   |         |
| Q3. Should I mix biochar with an organic or mineral fertilizer before applying it? |         |
| Q4. If I soak biochar in water soluble fertilizer, will it retain the nutrients?   |         |
| Q5. How much does biochar cost?                                                    |         |
| Q6. What machinery can I use to crush biochar?                                     |         |
| Q7. What is the ideal particle size of biochar?                                    |         |
| Q8. Is incorporating biochar into the soil generally recommended?                  |         |
| Q9. How do I use biochar with my tree and shrub plants?                            |         |
| Q10. Is there a response when biochar is applied to better quality soil?           |         |
| Q11. Is there such a thing as liquid biochar?                                      |         |
| Biochar & Compost                                                                  |         |
| Q1. What is the role of biochar compared to compost?                               |         |
| Q2. What is co-composting?                                                         |         |
| Q3. How much biochar do I mix with compost?                                        |         |
| Q4. Can I use biochar in compost tea?                                              |         |
| Biochar changes to soil                                                            | 1       |

| Variable                                                 | Value         | Unit                                                                         | Meets NRCS 336 Standard |
|----------------------------------------------------------|---------------|------------------------------------------------------------------------------|-------------------------|
| Bulk Density                                             | 11.3          | lbs/ft <sup>3</sup>                                                          | N/A                     |
| Moisture Content                                         | 50.20%        | Percent                                                                      | N/A                     |
| Organic Carbon (Corg)                                    | 83.00%        | Percent                                                                      | Meets Criteria          |
| H: Corg                                                  | 0.57          | Ratio                                                                        | Meets Criteria          |
| рН                                                       | 9.24          | pH Units                                                                     | Reported as Needed      |
| Liming, CaCO3 equivalent %                               | 2.50%         | Percent                                                                      | Reported as Needed      |
| Ash                                                      | 2.40%         | Percent                                                                      | Reported as Needed      |
| Nitrogen                                                 | 4100          | ppm (dry weight)                                                             | Reported as Needed      |
| Phosphorous                                              | 20            | ppm (dry weight)                                                             | Reported as Needed      |
| Potassium                                                | 3705          | ppm (dry weight)                                                             | Reported as Needed      |
| Arsenic, As                                              | 0             | ppm (dry weight)                                                             | Meets Criteria          |
| Cadmium, Cd                                              | 0.19          | ppm (dry weight)                                                             | Meets Criteria          |
| Calcium, Ca                                              |               | ppm (dry weight)                                                             | Needs to be Reported    |
| Chromium, Cr                                             | 4.6           | ppm (dry weight)                                                             | Meets Criteria          |
| Copper, Cu                                               | 9.6           | ppm (dry weight)                                                             | Meets Criteria          |
| Lead, Pb                                                 | 0.46          | ppm (dry weight)                                                             | Meets Criteria          |
| Molybdenum, Mo                                           | 0.6           | ppm (dry weight)                                                             | Reported as Needed      |
| Mercury, Hg                                              | 0             | ppm (dry weight)                                                             | Meets Criteria          |
| Magnesium, Mg                                            |               | ppm (dry weight)                                                             | Needs to be Reported    |
| Nickel, Ni                                               | 4.7           | ppm (dry weight)                                                             | Meets Criteria          |
| Selenium, Se                                             | 0             | ppm (dry weight)                                                             | Meets Criteria          |
| Zinc, Zn                                                 | 35.6          | ppm (dry weight)                                                             | Meets Criteria          |
| Boron, B                                                 | 8.1           | ppm (dry weight)                                                             | N/A                     |
| Chlorine, Cl                                             | 118           | ppm (dry weight)                                                             | N/A                     |
| Sulfur, S                                                |               | ppm (dry weight)                                                             | N/A                     |
| Sodium, Na                                               | 0             | ppm (dry weight)                                                             | N/A                     |
| Aluminium, Al                                            | 25            | ppm (dry weight)                                                             | N/A                     |
| Iron, Fe                                                 | 1566          | ppm (dry weight)                                                             | N/A                     |
| Sodium, Na<br>Aluminium, Al<br>Iron, Fe<br>Mangapage, Mp | 0 25 1566 222 | ppm (dry weight)<br>ppm (dry weight)<br>ppm (dry weight)<br>ppm (dry weight) | N/A<br>N/A<br>N/A       |



- Manure management
- Stormwater management
- Carbon Markets
- Compost:biochar synergies
- Lab analysis Interpretation
- 336 carbon amendment

https://biochar-us.org/welcome-biocharlearning-center

## **ONLINE RESOURCES**





ABOUT BIOCHAR CASE STUDIES SUBMIT A SAMPLE TOOLS FIND BIOCHAR ABOUT THE ATLAS





What are the benefits of biochar?

Learn how biochar can benefit agriculture, natural ecosystems, and rural livelihoods.



biochar?

See applications in horticulture, farming,

forestry and environmental remediation

Will biochar do what making and using

> Learn how feedstocks, production conditions, and additives determine how biochar interacts with your soil.

I want?



A range of biochars are increasingly available

for sale throughout the PNW.

## Kristin.Trippe@USDA.gov











