### Can Carbonaceous Particle Amendments—Including Biochar—Improve the Anaerobic Digestion of Agricultural Wastes?



[www.creativecommons.org]

#### **Douglas F. Call**

Assistant Professor Department of Civil, Construction, and Environmental Engineering North Carolina State University Raleigh, North Carolina

## NC STATE UNIVERSITY

# Anaerobic digestion can provide an environmentally sound approach to animal waste management

Open-air, swine lagoons

Anaerobic digesters



## Anaerobic digesters face startup, stability, and economic challenges

# Efficient electron transfer within anaerobic communities is critical for stable anaerobic digester operation



[Brock Biology of Microorganisms, 13th ed.]

### Microbe-to-microbe electron transfer mechanisms



Mediated interspecies electron transfer (MIET)

Direct interspecies electron transfer (DIET)

DIET via pyrogenic carbonaceous material (PCM)

# Our understanding of DIET is primarily limited to <u>defined</u> cultures

**Defined cultures** 

- Geobacter metallireducens and Methanosarcina barkeri
- Geobacter metallireducens and Methanosaeta harundinacea







## Objective: To determine the impact of PCM addition on the anaerobic digestion of animal wastewater

#### Swine wastewater properties

| Parameter                           | Unit | Values        |
|-------------------------------------|------|---------------|
| Total chemical oxygen demand (TCOD) | mg/L | 4,800 ± 1,700 |
| Total suspended solids (TSS)        | mg/L | 7,100 ± 600   |
| Volatile suspended solids (VSS)     | mg/L | 4,700 ± 800   |
| рН                                  |      | 7.4 ± 0.2     |



### Particle properties

|              | Unit                  | Graphite                                | Biochar      | AC          |  |
|--------------|-----------------------|-----------------------------------------|--------------|-------------|--|
| Conductivity | S/cm                  | 17 ± 2.6                                | 0.22 ± 0.046 | 1.2 ± 0.25  |  |
| Surface area | m²/g                  | 0.6 - 19                                | 15 - 209     | 258 – 1,596 |  |
| Size         | mm                    | 2.0 - 2.4 (granule), 0.21-0.25 (powder) |              |             |  |
| Loading      | g particles<br>/g VSS | 6, 3, 1.5                               |              |             |  |



<u>Controls</u> Blanks (no particles) Glass particles

(Pierson H. O., Noyes Publications, 1993; Trammell M.P. & Pappano, P.J., Oak Ridge National Laboratory, 2011. Chen S. et al., *Sci. Rep.*, 2014; Ao G. et al., *Carbon lett.*, 2008; E. Berl, *Trans. Faraday Soc.*, 1938; Kastening B. et al., *Electrochim. Acta*, 1997; Shornikova O. N. et al., *Russ. J. Phys.*, *Chem. A.*, 2009; Mishima D. et al., In Electrical Insulation and Dielectric Phenomena, 2011)

CH<sub>4</sub> generation rates were recorded in real-time to determine differences in bioreactor kinetics



<u>Sample cycle</u> particle size: 212-250µm, loading rate: 6 g-particles/g-VSS

Graphite consistently resulted in higher normalized CH<sub>4</sub> production rates. Biochar & AC results depended on particle size



 $CH_4$  recoveries followed a similar trend, except that all AC amendments decreased  $CH_4$  recovery relative to the control



Although CH<sub>4</sub> recoveries were lower with biochar and AC, more COD was removed than the no-particle controls.



COD – chemical oxygen demand

## COD likely adsorbed to biochar and AC, which reduced its conversion to $CH_4$



Fate of initial COD:





There were no clear relationships between CH<sub>4</sub> production and PCM electrical conductivity



### Surface property structures varied across all particle types



# Overall, only graphite consistently yielded larger normalized CH<sub>4</sub> generation rates and recoveries

- Biochar was not far behind graphite, with granular biochar yielding > 20% increase in CH<sub>4</sub> production rates than bioreactors without particles.
- Powdered biochar and AC amendments led to a sharp drop in CH<sub>4</sub> production rates
- Adsorption was the likely cause of high COD removals and low CH<sub>4</sub> recoveries for biochar and AC
- Economics
  - Graphite: \$100 \$2,000 / ton \$3.36 / m<sup>3</sup>-wastewater
  - AC: \$40 \$4,000 / ton \$1.34 / m<sup>3</sup>-wastewater
  - Biochar: \$0.5 \$800 / ton **\$0.02 / m<sup>3</sup>-wastewater**
- We still need a better understanding of what exactly happens when biochar is added to digesters

## Acknowledgements

Lead student: Qiwen Cheng Collaborator: Dr. Francis de Los Reyes

This work was supported by the Water Resources Research Institute (WRRI) of the University of North Carolina (UNC) System.















