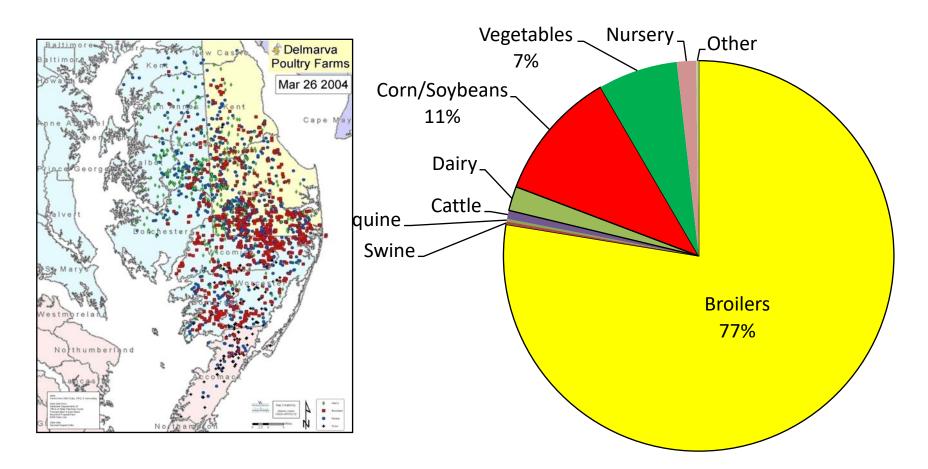


Using Poultry-derived Biochar as Litter Amendment to Control Ammonia Emission


Hong Li¹, Mingxin Guo², Jonathan Moyle³

¹ Department of Animal and Food Sciences, University of Delaware, Newark, Delaware ² Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware ³ University of Maryland Extension, College park, Maryland

UNIVERSITY of DELAWARE

Delmarva Poultry

Poultry Litter

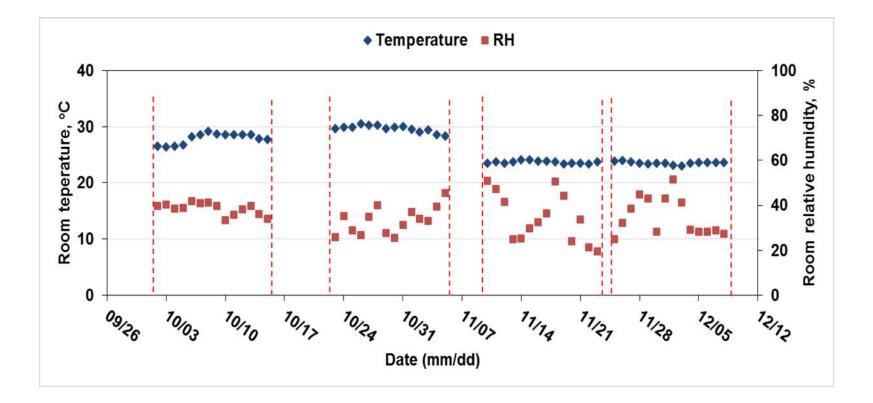
- Concerns about poultry litter (PL) are multifaceted
 - Excessive nutrient and emission sources (i.e. NH₃)
- Alternative use of PL as biochar to control NH₃
 - Pyrolysis of PL
 - PL biochar as litter amendment
 - Derived from PL
 - Acidified with H₂SO₄

- 1. Evaluate and delineate the efficacy of PL-derived biochar compared to other litter amendment on NH_3 emission.
- Conduct verification tests in environmentally controlled emission chambers on bird health, production performance, and air quality and emissions.

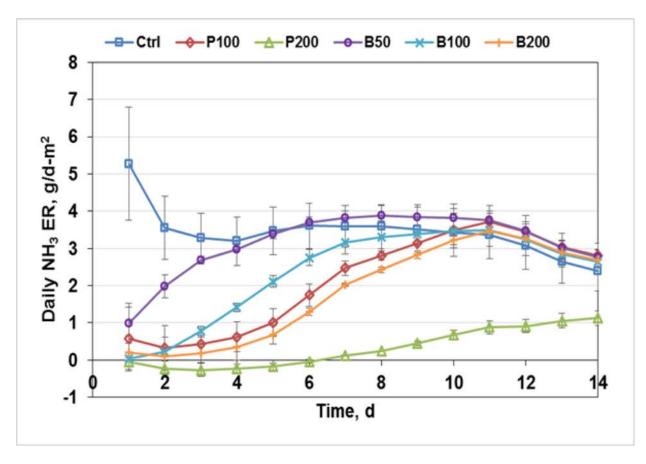
Materials and Methods

- PL biochar produced by 400°C slow pyrolysis of pelletized PL
- PL biochar acidified by soaking in 6M H₂SO₄ at 1:1
 w/w solid/solution ratio for 1 h at room temperature
- PL biochar dried at 105°C

- Air emission vessels
 - Each vessel (19 L)contained 2 kg litter
 - NH₃ concentration was measured by a photoacoustic analyzer with auto air sampling system
 - The biochar or PLT was applied on litter surface

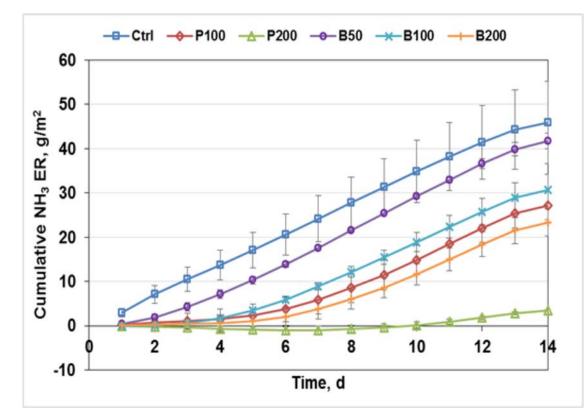


- NH₃ reduction test
 - Experiment 1: Acidified PL biochar vs. PLT[™] with 20%
 MC litter
 - Two PLT dosages (100 and 200 lb/1000ft²)
 - Three biochar dosages (50, 100, and 200 lb/1000ft²)
 - Experiment 2: different MC (35% vs. 40%)
 - Biochar only (200 lb/1000ft²)
 - Combination (100 lb/1000ft² biochar + 100 lb/1000ft² PLT[™])
 - * PLTTM is sodium bisulfate, which is a standard litter amendment for broilers
 - * Each experiment had two trials and each trial lasted for 14 days.


Results (Objective 1)

Environmental room air temperature and RH

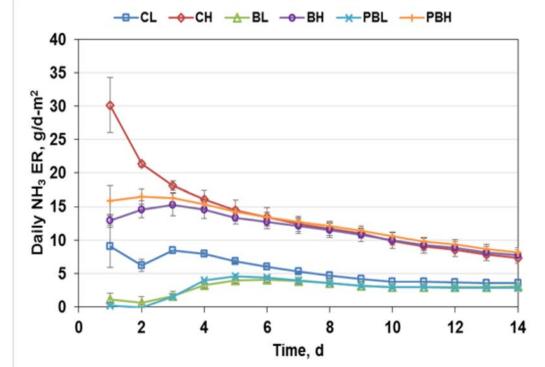
Results (Objective 1) Expt. 1 – Daily NH₃ emission rate (ER)



Ctrl = no additive P100 = 100 lb/1000ft² PLT P200 = 200 lb/1000ft² PLT B50 = 50 lb/1000ft² Biochar B100 = 100 lb/1000ft² Biochar B200 = 200 lb/1000ft² Biochar

Results

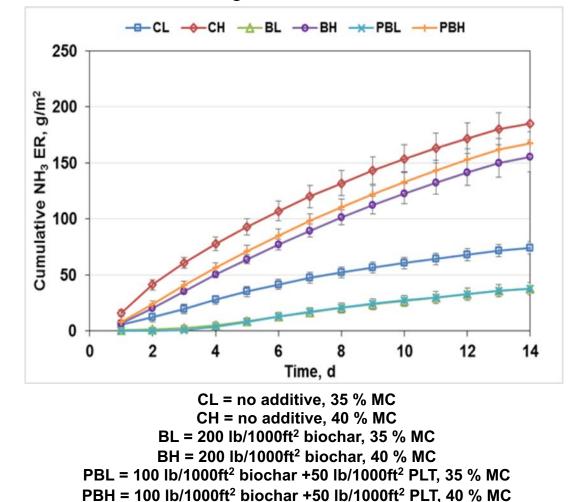
Expt. 1 – Cumulative NH₃ ER


Ctrl = no additive P100 = 100 lb/1000ft² PLT P200 = 200 lb/1000ft² PLT B50 = 50 lb/1000ft² Biochar B100 = 100 lb/1000ft² Biochar B200 = 200 lb/1000ft² Biochar

A twice amount acidified PL biochar is need to achieve the similar performance on NH3 emission reduction of broiler litter with PLT

Results (Objective 1)

Expt. 2 – Daily NH₃ emission rate (ER)



CL = no additive, 35 % MC CH = no additive, 40 % MC BL = 200 lb/1000ft² biochar, 35 % MC BH = 200 lb/1000ft² biochar, 40 % MC PBL = 100 lb/1000ft² biochar +50 lb/1000ft² PLT, 35 % MC PBH = 100 lb/1000ft² biochar +50 lb/1000ft² PLT, 40 % MC

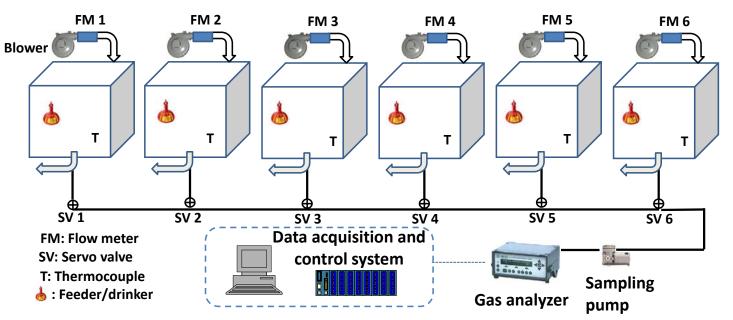
Results (Experiment 1)

Expt. 2 – Cumulative NH₃ ER

Results (Objective 1)

Expt. 1 – NH₃ ER reduction rate (%)

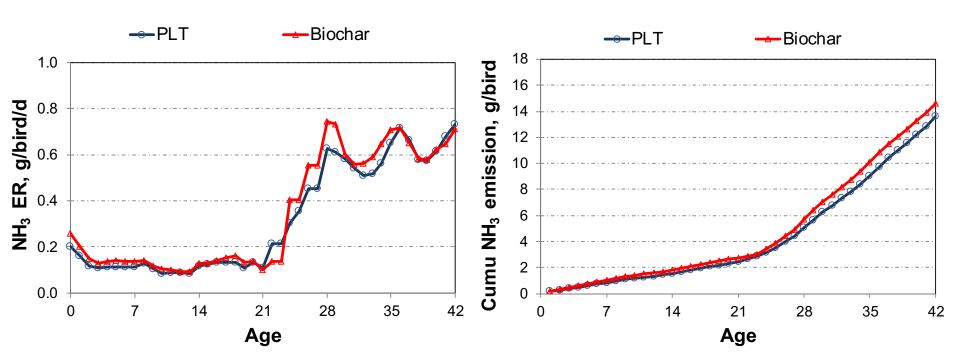
	35% MC	45% MC
PL biochar	45.6 ± 3.2	20.2 ± 4.0
PL biochar + PLT	40.9 ± 2.8	18.0 ± 3.1


UNIVERSITY of DELAWARE

Objective 2

Emission Chambers (EC) System

- Six environmentally controlled chambers
- 6 Ross 708s (female) per chamber
 - Standard commercial diet
- Air flow rate: 1 to 4 cfm/bird
- Acidified PL Biochar vs. PLT
 - 976 and 488 g/m² (200 and 100 lb/1000ft²)
- Ammonia emission
- Production performance and health
 - Feed conversion, growth rate
 - Necropsy and histopathological analysis


- Density: 0.95 ft²/bird (11.3 bird/m²)
- Interval: 5 min per chamber
- Grow-out: 6 wks

Results (Objective 2)

17

(N=3)

Results (Objective 2)

(N=3)

	PLT	Biochar
Body weight, g/bird	2909 ± 146	2951 ± 41
FCR	1.90 ± 0.13	1.88 ± 0.06
NH ₃ emission, g/bird	13.6 ±0.81	14.6 ± 0.49

Results (Objective 2)

Necropsy

- Parameters: Trachea, eyes, oral ulcers, paws, breast blisters, bone quality, air sacs, livers, hocks, lungs, intestines & gizzards
- Across Flocks
 - No oral ulcers and breast blisters
 - Good bones, air sacs, organs upon observation
 - Acidified PL biochar did not have negative impact

UNIVERSITY of DELAWARE

Conclusions

- Acidified PL biochar could be used to control NH₃ from broilers without negatively impact on production performance and health;
- Increased acidified PL biochar application rate could achieve the similar performance of PLT on NH₃ emission reduction from broiler litter;
- PL biochar with 200 lb/1000ft² of application rate reduced 45.6 % and 20.2 % NH₃ emission from broiler litter at high and low MC (40% vs. 35 %).

Using Poultry-derived Biochar as Litter Amendment to Control Ammonia Emission

Hong Li¹, Mingxin Guo², Jonathan Moyle³

¹ Department of Animal and Food Sciences, University of Delaware, Newark, Delaware ² Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware ³ University of Maryland Extension, College park, Maryland