

CRITICAL CHARACTERISTICS OF WOOD-BASED BIOCHAR CORRELATED WITH THE PYROLYSIS PROCESS IN AN INDIRECT KILN MICHAEL EIDGE, ALEX EBBEN | FEECO INTERNATIONAL

PRESENTATION OVERVIEW

- Problem statement
- Process overview
- Experimental retention time measurement
- Biochar activation process overview
- Results & Analysis
- Conclusions

PROBLEM STATEMENT

- Inconsistency in source material for biochar
- Inconsistency in production settings in order to achieve desired product quality
 - Carbon content
 - Iodine number
 - Percent yield
 - Heating value
 - Bulk density

PROCESS OVERVIEW

FEECO INDIRECT PILOT KILN:

- 6.5" Dia. x 84" Long (0.17 x 2.1m)
- Capable of operating at 400 1,800° F (204 – 982° C)
- Two electrically heated zones
- Thermocouples in each zone
- Adjustable speed and slope for altering bed profile and residence time

PROCESS OVERVIEW

EXPERIMENTAL RETENTION TIME MEASUREMENT

- Used equations to predict retention time
 - Perry's Chemical Engineers' Handbook¹
 - Passage of Solid Particles Through Rotary Cylindrical Kilns (United States of America, Department of Commerce)²
 - Flow of granular material through an inclined, rotating cylinder fitted with a dam ³
- Equations were verified experimentally using a tracer
- Variables effecting retention time
 - Particle shape
 - Bulk density
 - Dynamic angle of repose
 - Slope of drum
 - Drum rotational speed

- 1. Perry, R. H., Green, D. W., & Maloney, J. O. (1984). Perry's Chemical Engineers' Handbook (Sixth ed.). McGraw-Hill.
- 2. Sullivan, J. D., Maier, C. G., & Ralston, O. C. (1927). Passage of Solid Particles Through Rotary Cylindrical Kilns (United States of America, Department of Commerce). Washington D.C., WA: Government Printing Office.
- Scott, D. M., Davidson, J. F., Lim, S. -., & Spurling, R. J. (2008). Https://www.sciencedirect.com/science/article/pii/S0032591007003609. Powder Technology, 182(3), 466-473. Retrieved August, 2018, from https://www.sciencedirect.com/journal/powder-technology.

EXPERIMENTAL RETENTION TIME MEASUREMENT

40 minute retention time measurement

- Blue dye used as a tracer to measure retention time and bed distribution
- Wood chips were dyed and dried to the same moisture as un-dyed wood chips
- 0.25 lbs. of blue material was fed into the process when the process was at steady state and the heat was turned off
- Samples were taken at the discharge
- The "peak" or midpoint of the blue material being discharged was determined

EXPERIMENTAL RETENTION TIME MEASUREMENT

Retention Time = $47.5 - (1.425 + 1.35 + 5) \approx 40$ *minutes*

BIOCHAR ACTIVATION PROCESS OVERVIEW

• FEECO INDIRECT BATCH KILN:

- 10.5" Dia. x 24" Long (0.27 x 0.61m)
- Capable of operating at 400 1,800° F (204 – 982° C)
- Adjustable propane flame and drum rotation speed
- Thermocouples measuring shell and product bed temperature
- Saturated and superheated steam injection possible

BIOCHAR ACTIVATION PROCESS OVERVIEW

- 1. Biochar made in the FEECO indirect pilot kiln was then placed in the batch indirect kiln
- 2. Heated up to 1650 °F with nitrogen
- 3. Saturated steam injected at ~5 lb/hr for 1 hour at >1500 $^{\circ}$ F
- 4. Cooled with nitrogen to <160 °F
- 5. Resulted in Iodine numbers of 1300+

- The lodine number is defined as the milligrams of iodine adsorbed by 1.0 g of carbon
- Estimation of surface area and pore volume
- Effected by retention time and temperature

- Southern Pine40 min. Retention Time
- Southern Pine
 20 min. Retention Time

IODINE # VS. TEMPERATURE FOR SOUTHERN PINE BIOMASS

- Percent yield is assuming feed material is at zero percent moisture
- Indication of the rate of production
- Effected by retention time and temperature
- Southern Pine40 min. Retention Time
- Southern Pine
 20 min. Retention Time

YIELD VS. TEMPERATURE FOR SOUTHERN PINE BIOMASS

DIFFERENT WOOD SPECIES 20 MIN. RETENTION TIME AT 600° F

- Lower percent yield for hard woods except for bark and balsam fir
- No significant change in iodine number
- Greater percent carbon for hard woods except for bark and balsam fir

WOOD	WOOD TYPE	PERCENT YIELD	PERCENT CARBON	IODINE #	ACTIVATED IODINE #
White Birch	Hard	56.4	65.51	16	1345
Quaking Aspen Poplar	Hard	51.3	67.14	43	-
Balsam Fir	Soft	55.9	66.56	47	604*
Southern Yellow Pine	Soft	63.9	54.72	14	-
Red Spruce	Soft	62.9	59.23	0	1306
Red Spruce Bark	Soft Bark	61.6	68.79	14	-

*Partial activation with limited steam for <10 minutes

PROCESS DATA – SOUTHERN PINE BIOMASS

TEMP. (°F)	RETENTION TIME (min.)	PERCENT YIELD	IODINE #	PERCENT CARBON	BULK DENSITY (Ibs./ft.3)	HEATING VALUE (Btu/lbs.)
600	20	63.9	14	54.7	12.2	9517
800	20	28.0	196	70.0	10.4	11525
1000	20	20.9	321	80.0	9.1	13411
450	40	92.9	2	48.7	13.5	8588
600	40	44.8	72	63.9	11.5	10172
800	40	19.3	246	66.9	10.5	10656
1000	40	11.3	408	80.2	9.9	13495

Increase in Temperature

- Decrease in percent yield
- Increase in iodine number
- Increase in percent carbon
- Decrease in bulk density
- Increase in heating value

Increase in Retention Time

- Decrease in percent yield
- Increase in iodine number
- No significant change in percent carbon
- No significant change in bulk density
- No significant change in heating value

CONCLUSIONS

- Critical product specifications vary significantly with changes in retention time, temperature, and feedstock
- Product specifications should be optimized to meet target market specifications and maximize production
- Similar studies should be done in order size commercial size equipment and optimize process to the feedstock

QUESTIONS?

US Headquarters

(920)468-1000 Toll Free: (800) 373-9347 3913 Algoma Road Green Bay, WI USA **FEECO.com/contact**

Representatives Worldwide