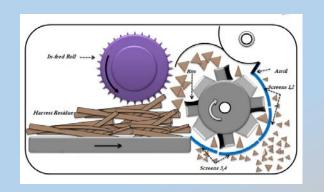


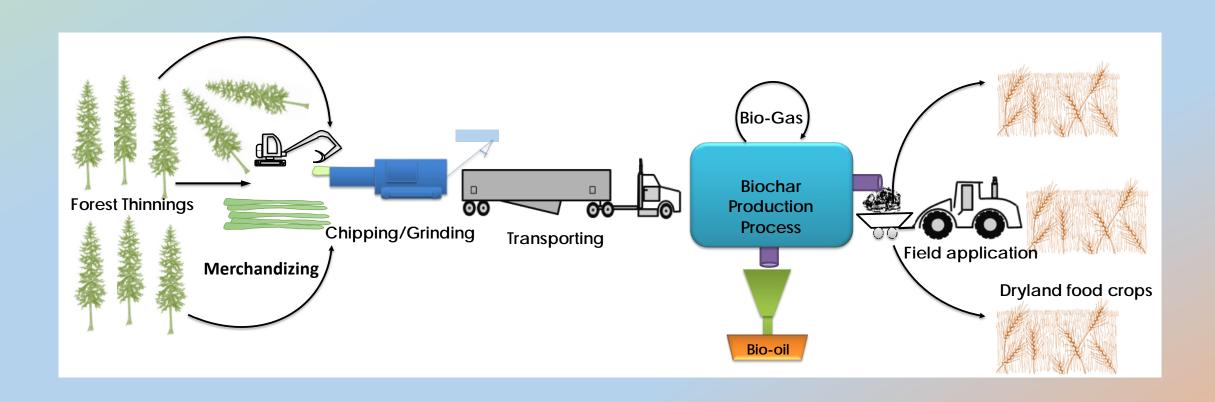
Opportunities For Biochar Production To Reduce Forest Wildfire Hazard, Sequester Carbon, and Increase Agricultural Productivity of Dryland Soils

John Sessions¹, Kristin Trippe², John Bailey¹, John Campbell³, David Smith⁴, Jeremy Fried⁵ Steve Machado⁶, Daniel Leavell¹, Marcus Kauffman⁷, Rolly Liu⁸, Jim Brown⁹ and Chris Tenney¹⁰

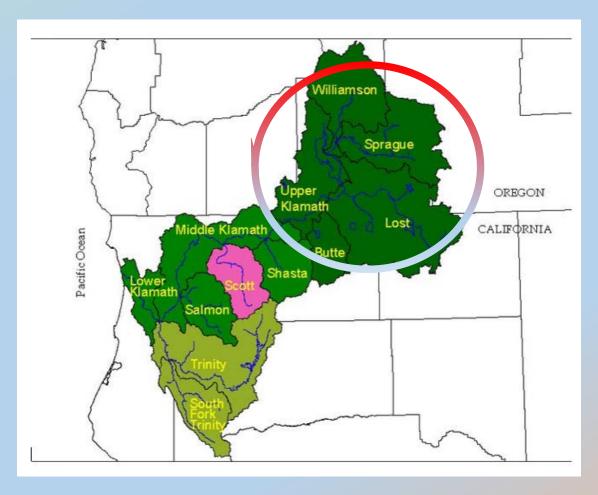

^{1.} OSU Forest Engineering, Resources, and Management, ^{2.}USDA Agricultural Research Service, Forage Seed and Cereal Research Unit, ^{3.}OSU Forest Ecosystems and Society, ^{4.}OSU Wood Science and Engineering, ^{5.}USDA Forest Service PNW Station, ^{6.}OSU Crop and Soil Science, Columbia Basin Ag Res Ctr, ^{7.} Oregon Department of Forestry, ^{8.}BSEI Inc., ^{9.} Karr Industries, ^{10.} Walking Point Farms, LLC.

Overview

- Project Goals
- Project Activities
- Status
- Next Steps
- Conclusions



Overall Approach: Evaluate the biochar supply chain from forest-to-farm at a <u>landscape</u> scale



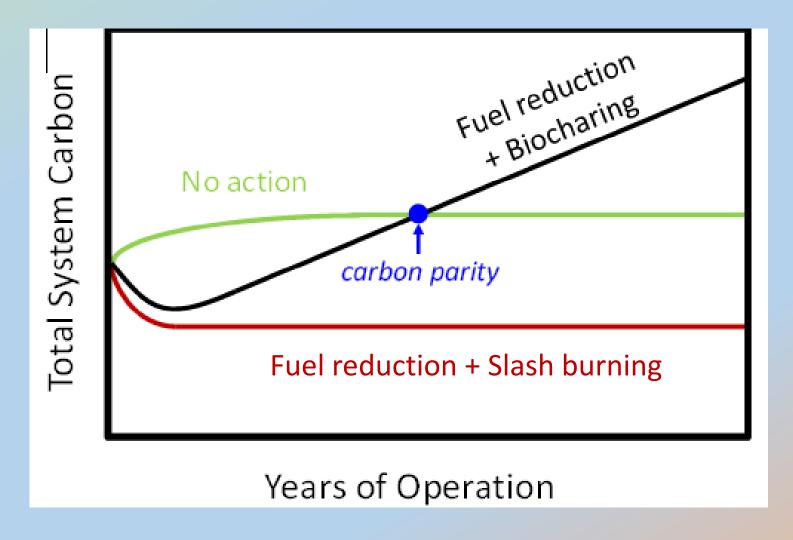
Develop Pro Forma Operating Budget for Biochar

- At scale of 15,000 tons of biochar per year
- Utilize lower quality biomass from treating 5,000 acres per year
- Evaluate one or more brown/green field sites in Upper Klamath Basin

Upper Klamath Basin Study Area

BIOCHAR 2016 Symposium August 22-25 Oregon State University

Goal 1: Improve Forest Resilience

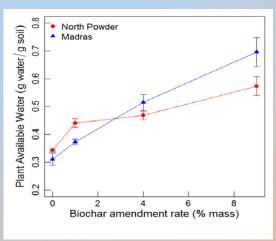

Before Treatment

After Treatment

BIOCHAR 2016 Symposium August 22-25 Oregon State University

Goal 2: Sequester Carbon

Goal 3: Improve Agricultural Soils


Biochar can increase the productivity of agricultural soils by modifying soil

properties

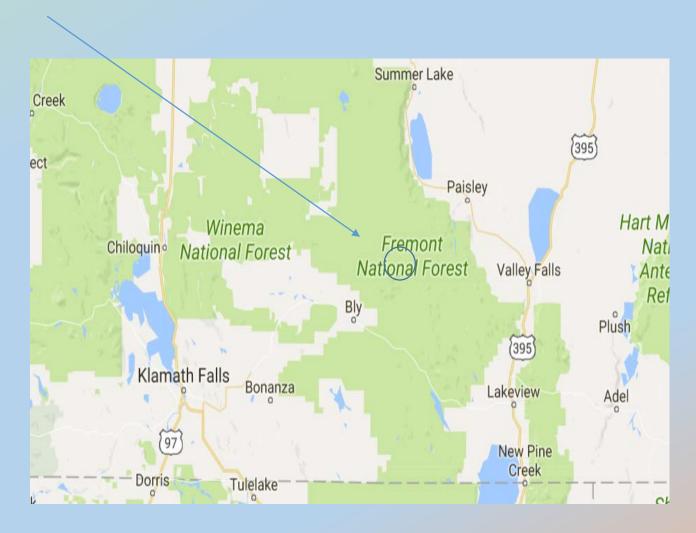
 Modest amounts of biochar can increase soil moisture by 20-30%

 Can forest-origin biomass increase plant available water to mitigate drought in the Klamath Basin?

Five Activities

- Develop biomass transportation and biochar production and delivery models
- Describe biochar properties to identify target soils, application rates, and crop response.
- Formulate a forest landscape-level hazard reduction optimization model to assign forest treatments.
- Identify the level of a wildfire hazard reduction program whose direct costs could be offset by <u>forest products</u>, <u>agricultural</u> <u>productivity increases</u> and <u>carbon credits</u>.
- Quantify the carbon sequestration potential of forest-origin biochar.

Biomass Collection and Delivery


Challenges:

- High harvesting costs on steeper ground, for even sawlogs, makes recovery marginal in many dry forests,
- <u>Lack of pulp markets</u> for many dry forests leaves about a 16-ft top log, defective logs and non-commercial species in forest.

Opportunities:

 <u>Cut-to-length harvesting technology</u> coupled with integral winches to provide traction assistance have been gaining increasing acceptance. More the half of the world's industrial wood is cut with cut-to-length systems and tethers have been available for about 15 years.

Pilot Timber Sale, Bly Ranger District

BIOCHAR 2016 Symposium August 22-25 Oregon State University

Pilot Timber Sale

Dry, Loose, Thin, Soils

Timber Sale Purchaser Collins Pine Lakeview, Oregon

Ground Slope 20-60%

Logging Contractor
Miller Timber
Services
Philomath, Oregon

(a) Non-merchantable material

(b) Tethered Harvester

(c) Tethered Forwarder

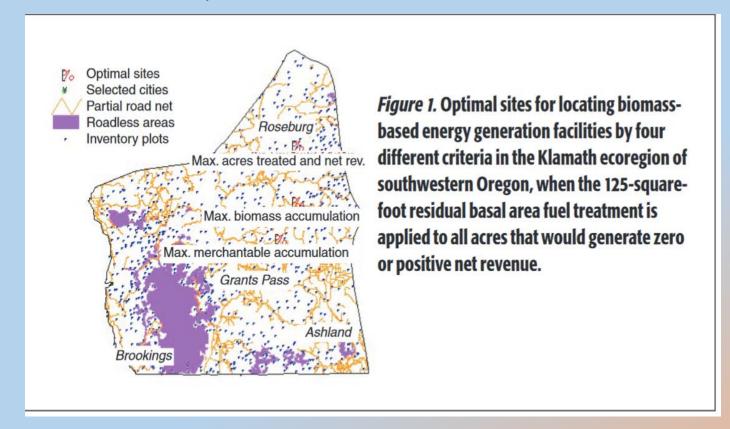
(d) Wheel tracks with lugs

(b)

Logging Contractor Miller Timber Services Philomath, Oregon

(c)

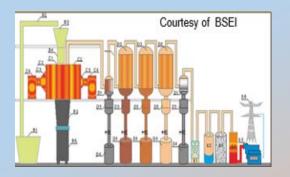
(d)


Ground Disturbance on 40-60% slopes

Estimating Feedstock Availability: BioSum 5.0

Optimization Model Applying Treatments to FIA Plots (Jeremy Fried, USFS PNW Station)

Applied in 2005 to evaluate potential cogeneration plant sites in central/southern OR.



Testing Two Biochars

"Conventional Pyrolysis" Biochar processed by Karr Group, WA

"Microwave Pyrolysis" Biochar processed by CHON, Inc, China (operating as BSEI in USA)

Feedstock From Study Area

Green Diamond/Lane Forest Products

A 3:1 Chips:Hog, Coarse grind

B 1:3 Chips:Hog, Coarse grind

C 3:1 Chips:Hog, Fine grind

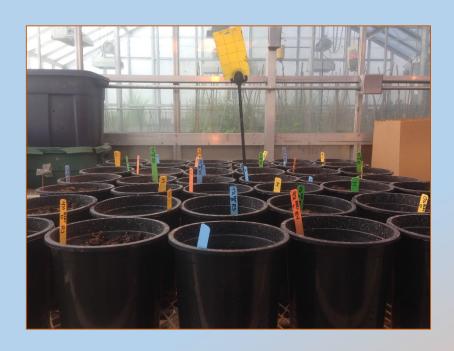
D 1:3 Chips:Hog, Fine grind

Nov. 5, 2015 (revised)
Oregon State University
Corvallis, OR USA

				Particle Size Distribution									
		Bulk	Ultimate										
		Density,	Bulk Den.								Fines,	Fines,	Non-
Properties	MC, %	#/fts	#/ft3	Overs, %	Mids, %	Fines, %	<3"	3" - 6"	6"-12"	>12"	<1/8"	>1/8"	Wood, %
Α	17%	13.4	13.7	1%	84%	15%	56%	42%	2%	0%	81%	19%	19%
В	14%	17.0	18.4	5%	63%	32%	22%	55%	23%	0%	78%	7%	26%
С	15%	14.0	15.4	0%	82%	18%	93%	7%	0%	0%	82%	18%	18%
D	12%	18.5	19.6	0%	54%	46%	94%	6%	0%	0%	82%	18%	34%

Chips From Bark Free Logs

Hog From Ground Whole Trees


Biochar Testing and Evaluation

- Laboratory tests to <u>compare biochars</u> (proximate, spectroscopy, bulk density, elemental, plant-available nutrients, pH, char conductivity)
- Pair biochar properties with agricultural soils to <u>optimize effect</u> of biochar application
- Conduct greenhouse studies to determine biochar application rates
- Outreach to growers to conduct field experiments through Klamath Basin Experiment Station, extension agents

Greenhouse Trials

How does each of the biochars impact growth of irrigated alfalfa in a 150 day potted GH trial?

- Grow alfalfa at 0, 1, 4, and 9% (by mass) biochar amendment rates.
- Compare plant biomass, plant tissue chemistry, and soil chemistry at harvest
- Determine impacts on plantavailable water at these amendment rates
- Evaluate impact of biochar on three pools of soil carbon

Collecting Soil Sample at Klamath Basin Research and Extension Farm (KBREC)

BIOCHAR 2016 Symposium August 22-25 Oregon State University

NEXT STEPS

- Complete Harvesting Data Collection/Analysis
- Develop Stand Treatments
- Evaluate Biochar Production Plant Sites
- Develop Production Costs
- Assemble Landscape Allocation Model
- Complete Carbon Model

Concluding Comments

If successful, this landscape-scale biochar supply chain could define a pathway to

- More resilient forests
- Higher carbon storage
- Increased agricultural productivity

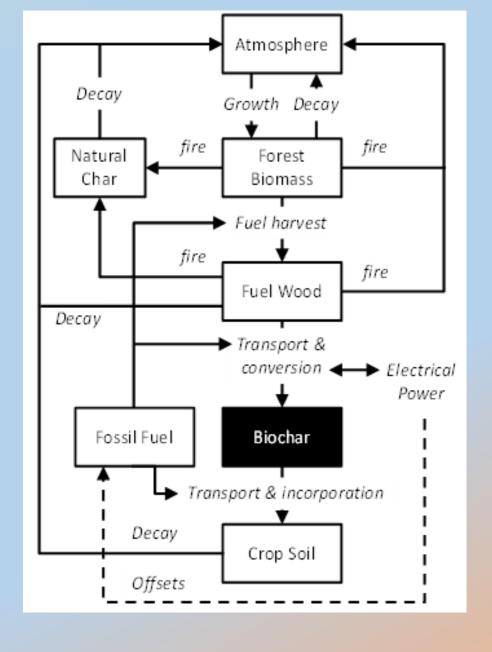
Acknowledgements

Funding has been provided by:

Institute for Working Forest Landscapes, College of Forestry, OSU

Northwest Advanced Renewables Alliance, USDA NIFA

Thank you! Questions?



John Sessions john.sessions@oregonstate.edu

Trace Carbon from forest-to-farm

