Paper Number: 05

Pyrolysis Characteristics of White Pine and Norway Spruce Needles and Properties of Resulting Biochars

Oluwatosin Oginni¹, Connor Crowley¹, Kaushlendra Singh¹, Louis McDonald², Tugrul Yumak³, Edward Sabolsky³, and Litha Sivanandan⁴

¹School of Natural Resources, ²Division of Plant and Soil Science, ³WVU Extension Service, ⁴Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, United States

*Correspondence- Kaushlendra.Singh@mail.wvu.edu

Presented at the USBI Biochar 2018, Wilmington, Delaware 11:40 AM - 12:05 PM, Wednesday, August 22 2018

Presenter Kaushlendra Singh

Acknowledgements

Funding

- 1. United States Department of Agriculture McStennis Grant Program (Accession No. 1007044)
- 2. WV Energy Institute O'Brian Research Award

IrginiaUniversity

3. United State Department of Agriculture through Northeast SunGrant Initiative

Oluwatosin Oginni PhD Candidate School of Natural Resources

Dr. Tugrul Yumak Department of Chemistry, Sinop University, Turkey Edward Sabolsky Associate Professor, Mechanical and Aerospace Engineering

Litha Sivanandan Associate Professor & Extension Specialist – Food Safety and Preservation

Louis McDonald Professor of Environmental Soil Chemistry and Soil Fertility

Biochar/Activated Carbons/Porous Carbons

Wood **Forest Residues Crop Residues** Manure **Municipal Solid** Sen any feedstory or proce

Pyrolysis Gasification

nology

rable for all applications? As an absorbent Soil amendment atalyst development Agriculture/Horticulture Waste water treatment **Electrochemical Devices**

n any technology

Applications

/irginiaUniversity.

Characteristics of Porous Carbons as an absorbent

Densities

- Material density
- Bed density
- Particle density

Pore Size Distribution

- Macropore > 25 nm
- Mesopore 1nm to 25 nm
- Micropores < 1 nm

Porosity

- Particle Porosity
- Bulk Porosity

Surface Area

- Internal
- External

Surface Chemistry

- Surface functionalities
- Acidic
- Basic
- Oxygenated groups

Nature of Carbon Surface

- Diamond
- Graphitic
- Amorphous

Others

- Surface charge
- Surface energy

VirginiaUniversit

Application: Removal of Acetaminophen from wastewater
Molecule size of acetaminophen: 1.25 nm
Minimum Pore Size Needed: about 2.5 nm or larger
Surface: Partially Graphitic but more disordered

carbon surface

Selection of Feedstock is Important

Because we cannot create pore structure totally, otherwise most commercial applications would have use graphite only.

Our Research on Porous Carbons- Since 2004- Ongoing

- Poultry Litter Biochars
- Forest Residue Biochars
- Herbaceous Biomass Biochars
- Woody Biomass Biochars
- Selected Forest Materials

Focused Applications

- As an absorbent for agricultural nutrients and pharmaceutical compounds
- As an electrode material for electrochemical devices

6 research project and 12 published journal articles

West Virginia University.

Our Search for Porous Carbons for Cost Effective Electrode Materials

Graphene/PH1000

carbon nanotubes

Image (Nanotubes)- Lu, W.; Dai, L., Carbon Nanotube Supercapaci Image (Nano Horn)- Deshmukh, A. B.; Shelke, M. V., Synthesis anc *Advances* **2013**, *3* (44), 21390-21393.

Imange (Carbon Fabric)- Wang, Y.; Tang, S.; Vongehr, S.; Ali Syed, Graphene Doped Polyacrylic Acid/Polyaniline Composites. Scienti

carbon fabrics

010; p Ch. 29. 1-Fe3O4 nanocomposite supercapacitor electrode. *RSC*

on Cloth Supercapacitors Based on Highly Processible N-

Recent Work: Herbaceous Biomass Crop for Porous Carbon Production

Source	Biomass	Properties	Comment	
Ducey et al. [<u>5</u>]	Switchgrass	$S_{BET} = 218.7$ m ² /g	Steam Activation. Used for soil amendment	
Shim et al. [<u>6</u>]	Miscanthus	S _{BET} = 322 m ² /g	Cu Sorption	
Kalyani et al. [7]	Turf grass	$S_{BET} = 250$ m ² /g	Chemical activation (ZnCl ₂) Used for electrolysis of water for hydrogen production	
Our Ongoing Research	Switchgrass	S _{BET} = 1372 m ² /g	Chemical activation (H ₃ PO ₄) Used for electrode materials for energy storage devices	

[5] T.F. Ducey, J.A. Ippolito, K.B. Cantrell, J.M. Novak, R.D. Lentz, Addition of activated switchgrass biochar to an aridic subsoil increases microbial nitrogen cycling gene abundances, Applied Soil Ecology, 65 (2013) 65-72.

[6] T. Shim, J. Yoo, C. Ryu, Y.-K. Park, J. Jung, Effect of steam activation of biochar produced from a giant Miscanthus on copper sorption and toxicity, Bioresource Technology, 197 (2015) 85-90.

[7] P. Kalyani, A. Anitha, A. Darchen, Activated carbon from grass – A green alternative catalyst support for water electrolysis, International Journal of Hydrogen Energy, 38 (2013) 10364-10372.

Electrode Performance for Switchgrass-Based Porous Carbons

- KOH-activated biomass (KOH-K) showed higher capacitance even after 1000 cycles.
- KOH activation is found to be more effective than H₃PO₄ activation.

Surface Area and Pore Characteristics of Tested Porous Carbons

	BET Surface area (m²/g)	Micropore volume ^a (cm ³ /g)	Cumulative volume ^b (cm ³ /g)	Pore diameter ^c (nm)
Biomass	< 5.0	-	-	more
H ₃ PO ₄ -Biomass	1372.9	0.06	carbon with	
KOH-Biomass	1271.7	need porou	stock!!!!	1.69
KOH-Bion	ded that we	nd New re	0.10	1.65
Wecon	e voluite 698.0	0.12	0.62	2.74

(a) t-Pla ______ reported volume | (b) BJH Desorption cumulative volume of pores between 0.70 nm and 50.0 nm diameter | (c) BJH Desorption average pore diameter (4V/A)

 KOH impregnation produced porous carbons with about half of internal pore volume made-up of micropores, whereas, H₃PO₄ produced mostly mesoporous carbons.

Searching for Microporous Carbons

White Pine Needles

Needle Leaves Survive Harsh Winter (-22 to -40°F), Why?

- Possible Reasons:
 - Leaves have sap (mixture of chemicals) that prevent cells from freezing
 - Leaves have lot of micropores that act as safe heaven for sap/liquid and not allowing them to freeze

Needle Leaves Survive Harsh Winter (-22 to -40°F), Why?

Significant depression in the freezing point (ΔT_m) of pure water in small pores may be predicted the Gibbs– Thomson equation <u>1</u>. For a pure substance in a cylindrical pore of radius R (nm):

$\Lambda T -$	<mark>51</mark> .9	
Δm	R	

Pores	Freezing Point
macropres (>50 nm)	<mark>-1.0</mark> 3 °C or 30.14 °F
mesoporoes (>2 nm)	-25.95 °C or -14.71 °F
micropore (<1 nm)	-51.9 °C or -61.42 °F .

To compare pyrolysis behavior of White Pine and Norway Spruce needles and investigate characteristics of resulting biochars.

Processing and Characterization of Biomass Characterization

Testing-Adsorption Kinetics and Equilibrium

Slurry Batch Reactor

Properties	Caffeine	
Molecular structure	$\begin{array}{c} O & CH_3 \\ H_3C & N & N \\ O & N & N \\ O & CH_3 \\ CH_3 \end{array}$	
Molecular weight (g/mol)	194.2	
Molecular size (nm)	0.98 x 0.87	
Use/category	Stimulant	

Image Sources:

http://www.thrombocyte.com/is-acetaminophen-a-blood-thinner/ https://www.cbsnews.com/media/things-you-should-know-about-caffeine/

Pore Structure of BioChars

- consists of crystallites with a strongly disturbed graphite structure.
- randomly oriented and interconnected by carbon cross-links.
- The micropores are formed by the voids between the crystallites.
- Slit-like pores are found.

Graphite Crystalline Structure

Randomly Oriented Graphite microcrystallites

How Does BioChars Work?

Figure: Basic Single Solute System Adsorption (Worch, 2012)

- Physical Adsorption-
 - It is caused by weak interactions of van der Waals forces (induction forces, dipole-dipole interactions, dispersion forces). $H_{ads} < 50 \ kJ/mol$
- Chemical Adsorption-
 - It is caused by chemical reaction between adsorbate and surface sites. $H_{ads} > 50 kJ/mol$

Sources: Worch, E., Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter: 2012

Theoretical Thermodynamic Considerations

$$dG = -SdT + Vdp + \sum_{i} \mu_{i}dn_{i} + \sigma dA$$
$$\sigma = \left(\frac{\partial G}{\partial A}\right)_{T,p,n_{i}}$$

When adsorption takes place:

$$\sigma_{ws}-\sigma_{as}=\pi>0$$

For adsorption to take place, change in free energy must be negative:

$$\Delta G_{ads} = \Delta H_{ads} - T \Delta S_{ads} < 0$$
 , since $\Delta S_{ads} < 0$ $\Delta H_{ads} < 0$

Adsorption is a Exothermic process

West Virginia University, Worch, E., Adsorption technology in water treatment: fundamentals, processes, and modeling. Walter de Gruyter: 2012

G= Gibbs Free Energy S= Entropy T= Temperature p= Pressure ni= Number of moles A= Surface V= Volume μ= Chemical Potential σ = Surface free energy ws= Water-Solid interface as= Adsorbate solutionsolid interface π = Spreading pressure depends on adsorbate amount

Adsorbate Concertation= C; Temperature= T; Space= z; Time= t

/irginiaUniversity.

Sources: Worch, E., *Adsorption technology in water treatment: fundamentals, processes, and modeling*. Walter de Gruyter: 2012

Adsorption Testing- Single Solute System

Adsorption Kinetics

C= f(t)

- Solute Concertation= 40 ppm
- Solution pH= 6.21
- Durations= 0.25, 0.50, 1, 3, 5, 7, and 9 hours
- Temperature= 25 °C
- Adsorbent Loading= 10 mg
- Solution volume= 40 ml

Adsorption Equilibrium

q=f(C, T); T= Constant

- Solute Concentrations (ppm)=10, 20, 30. 40
- Solution pH= 6.21
- Duration = 5 hours
- Temperature = 25 °C
- Adsorbent Loading = 10 mg
- Solution volume = 40 ml

Slurry Batch Reactor

Sources: Worch, E., *Adsorption technology in water treatment: fundamentals, processes, and modeling.* Walter de Gruyter: 2012

Adsorption Kinetics- The pseudo-second order kinetic model $C_o = \text{initial concentration (ppm)},$

$$q_t = \frac{C_o - C_t}{W} V$$

$$\frac{t}{q_t} = \frac{1}{k_2 q_e^2} + \frac{1}{q_e} t$$

 C_o = initial concentration (ppin), C_t = concentration at time t (ppm), V = volume of the adsorbate solution (ml), W = weight of the activated carbon used (mg), and q_t = amounts of the adsorbate adsorbed at time t (mg/g)

 q_e = amounts of the adsorbate adsorbed at equilibrium (mg/g), t = time (min) k_2 = equilibrium rate constant (g/mg.min), k_2 and q_e can be estimated from the intercept and slope, respectively, of the plot of t/q_t versus t, $h = k_2 \cdot q_e^2$ = the initial adsorption rate (mg/g.min), $t_{1/2}$ = the time required for the adsorbent to uptake half of the adsorbate amount= $t_{1/2} = \frac{1}{k_2 q_e}$

A.S. Mestre, J. Pires, J.M.F. Nogueira, A.P. Carvalho, Activated carbons for the adsorption of ibuprofen, Carbon, 45 (2007) 1979-1988.

Adsorption Equilibrium

Langmuir isotherm model

$$q_e = \frac{q_m \cdot b \cdot C_e}{1 + b \cdot C_e}$$

 q_e = equilibrium quantity adsorbed (mg/g) C_e =equilibrium concentration of adsorbate (ppm) q_m = maximum adsorption capacity (mg/g) b = Langmuir constant (1/ppm) q_m and b can be determined from the linear plot of C_e/q_e versus C_e

Freundlich Isotherm Model

$$lnq_e = lnK_f + \frac{1}{n}lnC_e$$

 $K_f =$ strength of adsorption

 nC_e n = energetic heterogeneity of adsorbent surface The values of n and K_f can be obtained from the slope and intercept of the linear plot of lnq_e versus lnCe.

Results- Biomass Characterization

of Industrial and Engineering Chemistry 8 (Part 1): 102-104.

Results- Thermo-Chemical Decomposition Behavior

- Both biomass appears to be producing 25-26% biochars and lost 75% of their mass during heating.
- Heating faster or slower does not appear to have much effect on biochar vields or mass loss.

Results- Thermo-Chemical Decomposition Behavior

Raveendran, K., Ganesh, A., & Khilar, K. C. (1996). Pyrolysis characteristics of biomass and biomass components. Fuel, 75(8), 987-998.

Results- Pyrolysis Biochar Yields

Results- Biochar Characteristics

• pH of the biochars showed that they are alkaline in nature. This is a good indicator that the biochars will be good for amending acidic soils.

Results- Biochar Characteristics

Results- Biochar Characteristics

Harvey classification of Biochar Thermal Recalcitrance

Thermal	Class	Class B	Class A
Recalcitrance			Class A
R ₅₀	Highly susceptibility to biodegradation	Some susceptibility to biodegradation	Minimal susceptibility to biodegradation
	< 0.50	0.50 < R ₅₀ < 0.70	> 0.70

Table 1: Thermal Recalcitrance values (R₅₀) of Biochars

Pyrolysis Temp (°C)	White Pine	Norway Spruce
500	0.50	0.47
700	0.53	0.49
900	0.64	0.51

Harvey, Omar R., et al. "An index-based approach to assessing recalcitrance and soil carbon sequestration potential of engineered black carbons (biochars)." *Environmental science & technology* 46.3 (2012): 1415-1421.

Results- Pore Characteristics of Biochars

97-99% pores were made-up of micropores 20 0 10 30 30 Pore Width (Å)

Switchgrass Biochar's Pore Characteristics

Results- Ultrastructure of Biochars

30.0um

White Pine Biochar 500

Norway Spruce Biochar 500

White Pine Biochar 900

Norway Spruce Biochar 900

Results- Adsorption Equilibrium- Caffeine

- Langmuir isotherm model provides the better fit for the adsorption of caffeine than the Freundlich model.
- The Langmuir isotherm model assumes the surface of the activated carbon is energetically homogenous and that a monolayer surface coverage is formed with no interactions between the molecules adsorbed

Results-Adsorption Kinetics Switchgrass-Derived **Biochars had caffeine** absorption of 140.85 mg/g, 14 times higher

Take Home Message: Carefully select feedstock that is suitable to produce porous carbons for the intended application.

Thank you for your undivided attention!!!!!

*Email-Kaushlendra.Singh@mail.wvu.edu

