

The removal of fluoride from water using functionalized carbon materials

Ching-Lung Chen¹, Sang-Won Park², Jenn Feng Su¹, Yu-Han Yu¹, C. P. Huang¹

1: Department of Civil and Environmental Engineering, University of Delaware, Newark, DE, USA 19716

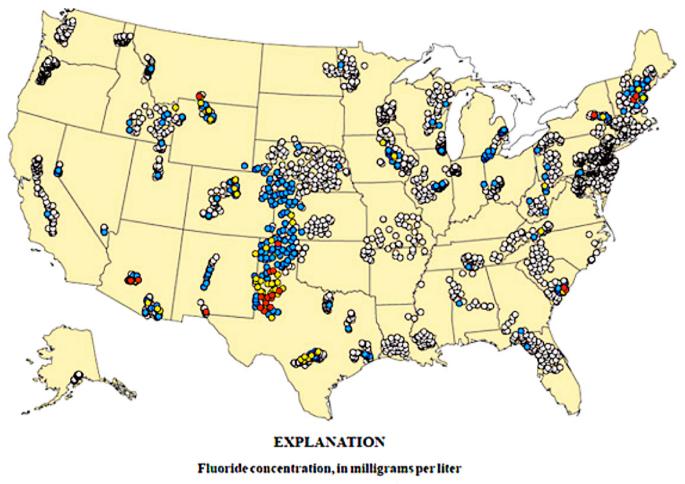
2. College of Environment, Keimyung University, Daegu, Korea

USBI Biochar Conference, Wilmington, DE August 21th, 2018

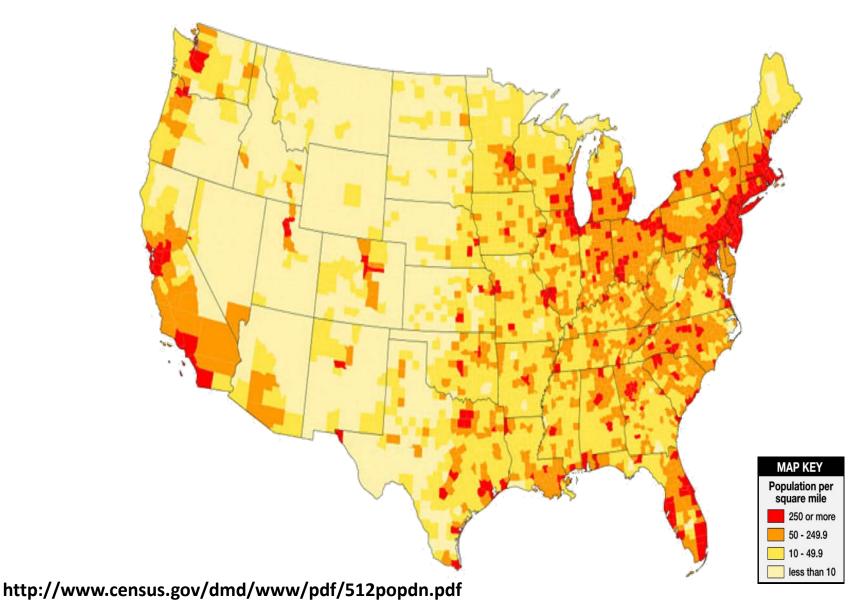
UNIVERSITY of DELAWARE

Outline

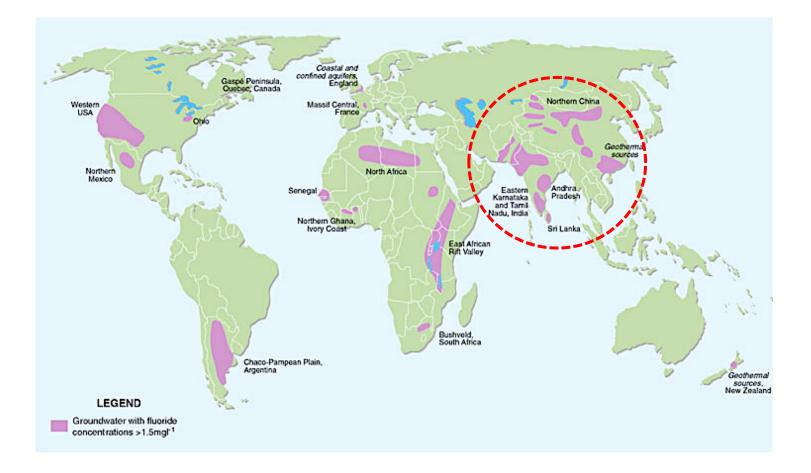
- 1. Introduction
- 2. Objectives
- 3. Materials and Methods
- 4. Results and Discussion
- 5. Conclusions


Applications

- Industrial uses
- 1. Mining (Na₃AIF₆, aluminium smelting)
- 2. Semi-conductor (HF)
- Cavity prevention

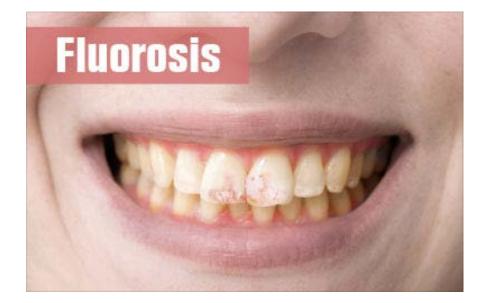

http://mainland.cctt.org/istf2011/pages/Background/UsingRadiation.asp http://www.pediatricdentistryorthodontics.com/toothpaste-what-to-look-for/

Fluoride Distribution in US



 $\bullet > 4$ $\bullet > 2$ and ≤ 4 $\bullet > 0.7$ and ≤ 2 $\circ \leq 0.7$

Population Density of the U.S.



Global Fluoride Distribution

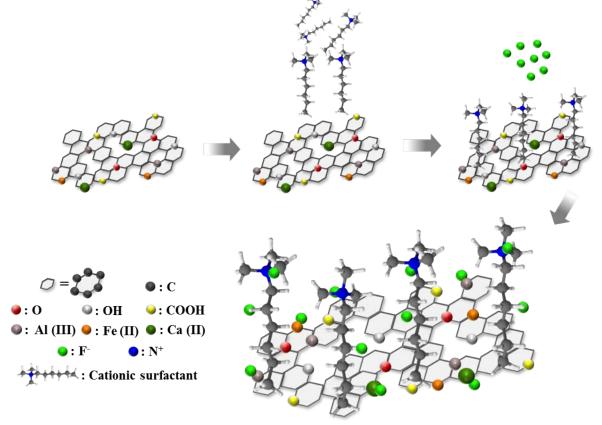
http://www.bgs.ac.uk/research/groundwater/health/fluoride.html

Human Health

1.5 ~ 4 mg/L Dental fluorosis

> 4 mg/L Bone calcification

http://www.abc.net.au/health/library/stories/2005/06/16/1831822.htm Mn Shruthi et al, 2016


Current Regulatory Status

- USEPA is in the process of reviewing fluoride regulation
 - Enforceable regulation
 - Maximum Contaminant Level (MCL) : 4 mg/L
 - Non- enforceable regulation
 - Secondary standard : 2 mg/L

Fluoride adsorption

Hypothesis

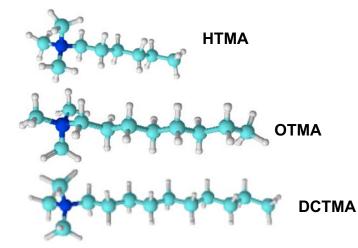
- Fluoride could be adsorbed by functionalized activated carbon via electrostatic reaction

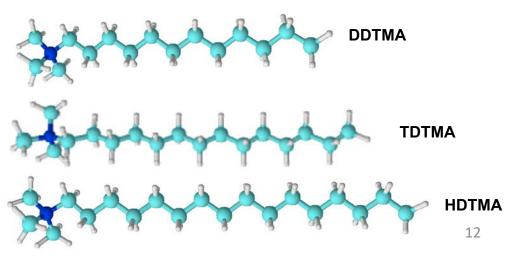
Objectives

1. To fabricate and characterize activated carbon for fluoride removal

- 2. To understand the mechanism of functionalized activated carbon to fluoride adsorption
- 3. To assess the performance of regenerated functionalized activated carbons

Carbon materials

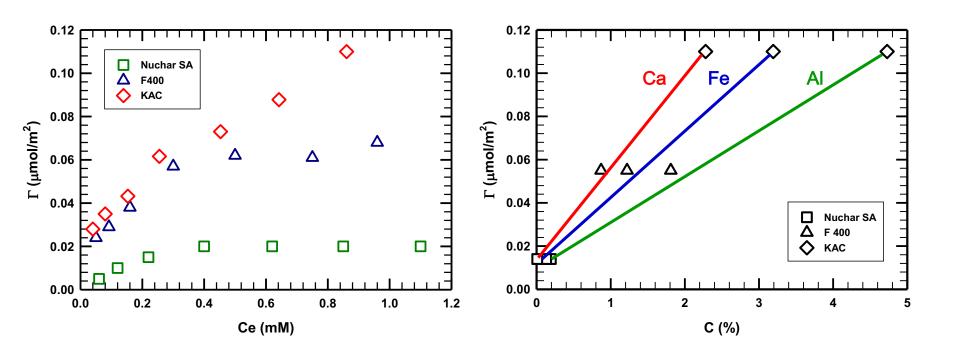

Activated carbon	Base material	Asp (m²/g)	pH_{zpc}	Ash content (% total mass)
Nuchar SA (PAC) ^a	Wood	1351	3.5	6.3
Filtrasorb 400 (GAC) ^a	Bituminous coal	1236	8.2	5.4
KAC (GAC) ^b	Bituminous coal	1000	6.8	11.6

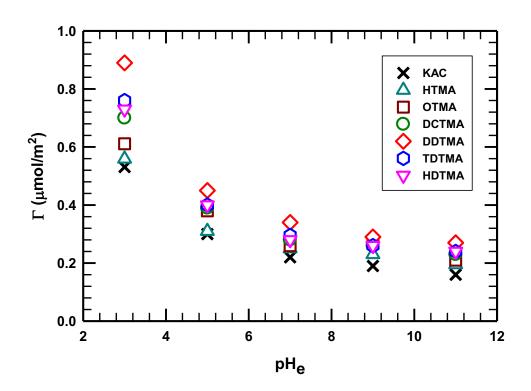

^a From Corapciohlu and Huang (1987)

^b This study

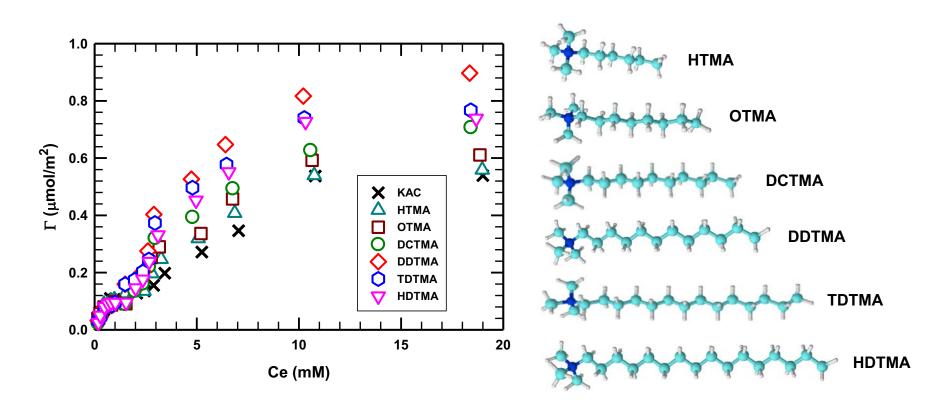
Cationic surfactants (Quats)

	Moiety	Chain Length (Å)	CMC (mM)
Hexyltrimethylammonium (HTMA)	CH_3 -(CH_2) ₅ N ⁺ (CH_3) ₃	9.13	495.0
Octyltrimethylammonium (OTMA)	CH ₃ -(CH ₂) ₇ N⁺(CH ₃) ₃	11.66	140.0
Decyltrimethylammonium (DCTMA)	CH ₃ -(CH ₂) ₉ N⁺(CH ₃) ₃	14.19	51.3
Dodecyltrimethylammonium (DDTMA)	CH ₃ -(CH ₂) ₁₁ N ⁺ (CH ₃) ₃	16.72	15.0
Tetradecyltrimethylammonium (TDTMA)	CH ₃ -(CH ₂) ₁₃ N ⁺ (CH ₃) ₃	19.25	1.6
Hexadecyltrimethylammonium (HDTMA)	CH ₃ -(CH ₂) ₁₅ N ⁺ (CH ₃) ₃	21.78	0.97



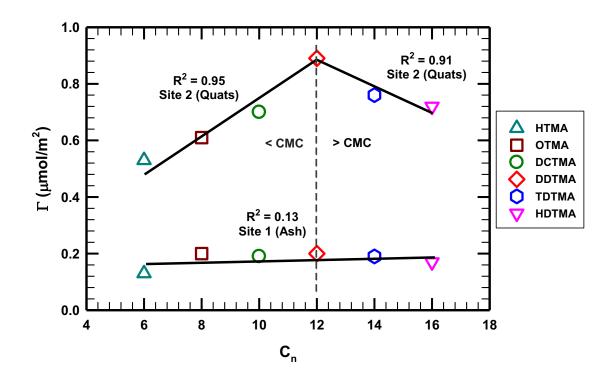

Results and Discussion

Effect of carbon ash


Effect of ash composition for fluoride removal by plain activated carbon. Experimental conditions: [AC] = 2 g/L, $I = 10^{-2} \text{ M NaCl}$, pH = 7.

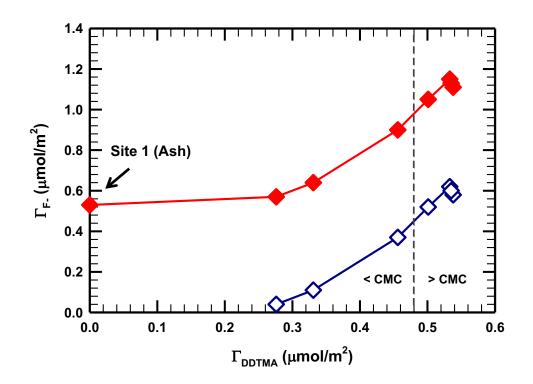
Effect of pH

Effect of pH on fluoride removal by functionalized KAC functionalized with HTMA, OTMA, DCTMA, DDTMA, TDTMA, and HDTMA. Experimental conditions: [FAC] = 2 g/L, I = 10^{-2} M NaCl. AC modified with 10 mM of Quats.

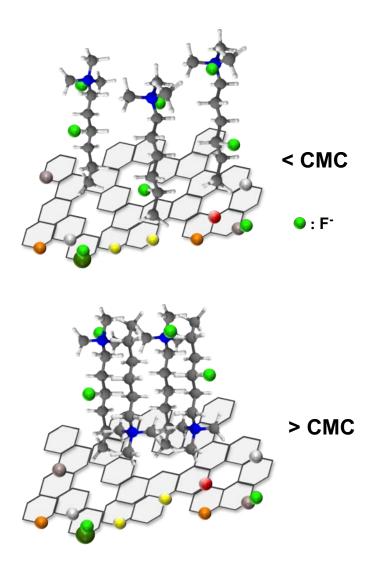

Adsorption isotherm

Adsorption of fluoride on KAC functionalized HTMA, OTMA, DCTMA, DDTMA, TDTMA, and HDTMA.

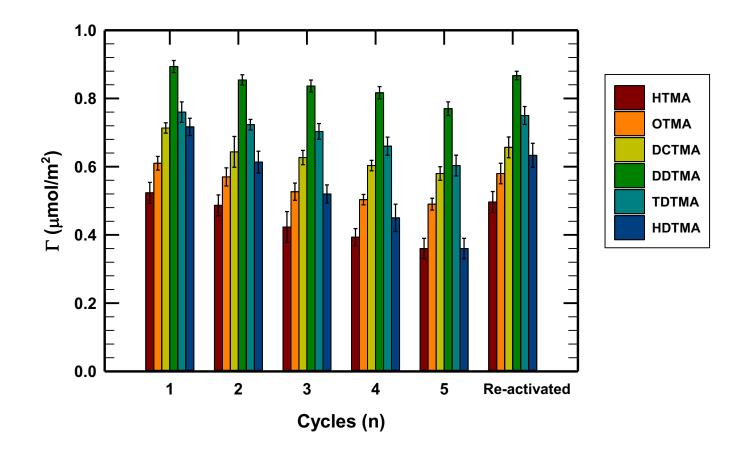
Experimental conditions: [FAC] = 2.0 g/L, I = 10^{-2} M NaCl, KAC modified with 10 mM of Quats, solution pH = 3.


Effect of carbon numbers

Adsorption of fluoride on KAC functionalized with HTMA, OTMA, DCTMA, DDTMA, TDTMA, and HDTMA.


Experimental conditions: [FAC] = 2.0 g/L, I = 10^{-2} M NaCl, KAC modified with 10 mM of Quats, solution pH = 3.

Effect of DDTMA loading



Effect of DDTMA surface loading on fluoride adsorption.

Experimental conditions: $[F-]_o = 20 \text{ mM}$, pH = 3, I = 10⁻² M NaCl, [FAC] = 2.0 g/L.

Reusability of Quat-KAC

Performance of reusability of KAC functionalized with Quats.

Experimental conditions: [FAC] = 2.0 g/L, I = 10^{-2} M NaCl, [NaOH] = 10^{-2} M, KAC modified with 10 mM of Quats, solution pH = 3.

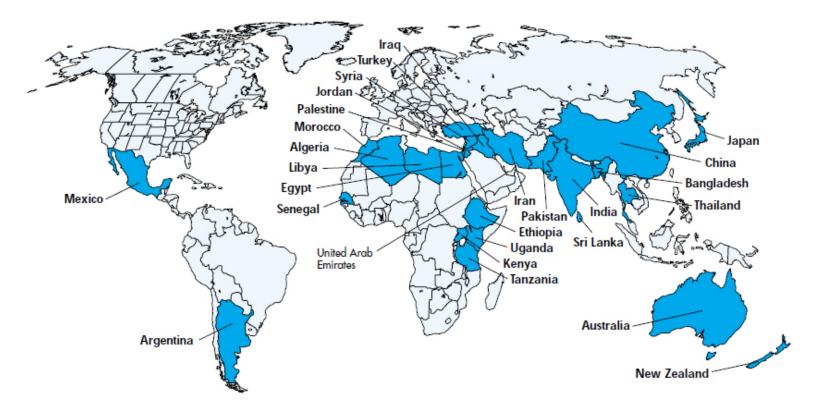
UNIVERSITY of DELAWARE

Conclusions

- Ash content of untreated activated carbon plays an important role on fluoride adsorption
- Fluoride removal increases at acidic pH
- DDTMA-KAC exhibits the best fluoride removal
- Fluoride removal increases with increase in carbon number at Quats concentration < CMC
- DDTMA-KAC shows at lease five cycles of reusability

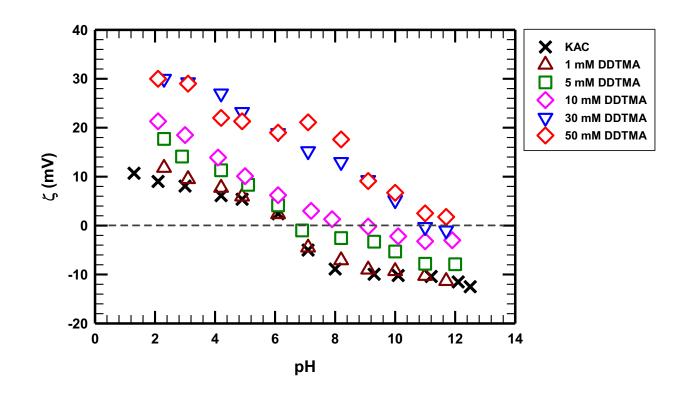
UNIVERSITY of DELAWARE

Acknowledge


- Mr. Michael Davidson
- Members of UD Aquatic Chemistry Lab
- KDE Company, S. Korea
- NSF EPSCoR II Grant No. 1632899

Thank you

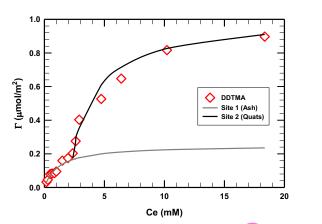
Back up

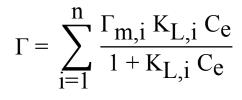

Countries with endemic fluorosis due to excess fluoride in drinking water

http://www.nofluoride.com/unicef_fluor.htm

Current Remediation Technology

Technology	Advantages Disadvantages		
Precipitation	Commercially available	Expensive; waste disposal	
Filtration	Commercially available	Expensive; fouling	
Electrodialysis	Easy implementation; fast	Energy costs; nonselective	
Adsorption	Low cost; Simple operation	lons competition; pH adjustment	


Zeta potential



Zeta potential of functionalized KAC functionalized with HTMA, OTMA, DCTMA, DDTMA, TDTMA, and HDTMA.

Experimental conditions: [FAC] = 2 g/L, I = 10^{-2} M NaCl. AC modified with 10 mM of Quats.

Adsorption isotherm

	-				
	$\frac{\Gamma_{m, 1}}{(\mu mol/m^2)}$	K _{L, 1} (L/mmol)	$\frac{\Gamma_{m, 2}}{(\mu mol/m^2)}$	K _{L, 2} (L/mmol)	$\Gamma_{m, total}$ (µmol/m ²)
Plain KAC	0.15	2.67	0.41	0.10	0.56
НТМА-КАС	0.17	1.69	0.68	0.45	0.85
OTMA-KAC	0.16	1.87	0.74	0.19	0.90
DCTMA-KAC	0.19	0.87	0.81	0.17	1.00
DDTMA-KAC	0.24	0.82	0.91	0.19	1.15
TDTMA-KAC	0.22	0.96	0.90	0.23	1.12
HDTMA-KAC	0.21	0.85	0.86	0.17	1.07