Dwelling on Drawdown How to maximize the use of biochar in the built environment

Kathleen Draper biocharro2@gmail.com

AGENDA

- What roles can biochar play in composites
- Why put biochar in composites?
- Properties of relevance
- Durability/end of life
- Examples of biochar in the built environment

What roles can biochar play in composites

Aggregate

Raw materials that are produced from natural sources and extracted from pits and quarries, including gravel, crushed stone, and **sand**. When used with a binding medium, like water, cement, and asphalt, they are used to form compound materials, such as asphalt concrete and Portland cement concrete.

Makes up over 90% of an asphalt pavement and up to 80% of a concrete mix. On average, 38,000 tons of aggregates used to construct one lane mile of interstate highway. The average home requires 400 tons of aggregate¹

Filler

Fine particles added to enhance performance and/or lower costs. Used extensively in paper, plastics, rubber, paints, coatings, adhesives, and sealants. 53Mt of fillers used annually.

Properties of relevance include density, hardness, size, aspect ratio, shape.

Common fillers: calcium carbonate, kaolin, glass, fly ash and carbon black.

¹ https://www.aem.org/news/construction-aggregates-101-what-they-are-and-why-they-matte

What roles can biochar play in composites

Colorant

Dye or **pigment**. Dyes are soluble and look transparent whereas pigments are opaque and need a binding agent to adhere to surfaces.

Common black pigments include carbon black and black iron oxide.

Admixture

Chemicals added during concrete mixing to improve properties such as workability, viscosity, density, drying time, strength, corrosion resistance, frost resistance, durability, etc. Examples include plasticizers, **fly ash**, etc.

Why put biochar in composites?

Climate

Lower embodied carbon/global warming impact, carbon sequestration

Environment

Reduced mining, reduced reliance on non-renewable resources (e.g., sand)

Performance enhancement

Lower density, improved compression strength & fire resistance, humidity control, etc.

Cost implications

Currently likely to be higher than some materials it is displacing but not all and biochar prices are poised to fall as production ramps up.

Biochar scaling

We need huge, non-seasonal, local & regional markets for biochar, with durability in decades to centuries

Properties of relevance

BIOCHAR PROPERTIES

•	'Quality' of biochar depends
	on end use

- Still very much in discovery phase
- Particle size
- Surface area
- Hydro-philicity/phobicity
- Morphology/aspect ratio
- Pore size distribution

Chemical properties

Ash (metals/minerals)

Elemental comp: Corg, H, N, O

- r × Carbon (fixed)
- ^o Volatiles

CEC (cation exchange capacity) Degredation during storage EC (electrical conductivity) eH (electron activity)/REDOX H:C ratio Liming Macro/micro nutrients PAH ph Reactivity Structural composition **Physical properties** Abrasion Agglomeration potential **Bulk Density Electromagnetic properties** Hardness (ball pan) Hydrophobicity Mechanical Stability Morphology Particle size & distribution Porosity: volume, pore size dist., micro, meso, macro Surface area Thermal Conductivity Water Holding Capacity

Soil			Bldg Mat		С
Farm	Remed.	Storm	Conc.	Insul.	Seques

 	-	 	

ignition potential?

Durability/End of Life

- Durable biochar = C/H ration < .7
- Biochar based product life expectancy
- End of life treatment
 - Landfill
 - Incineration
- Carbon removal market impact

Examples

- In buildings
 - Asphalt
 - Concrete
 - Plaster
 - Drywall
 - Composites
 - Tiles: wall, floor
 - Grout
 - Ероху
 - Lumber
 - Insulation
- Around buildings
 - Sewage systems
 - Water pipe trenches
 - Lawn, landscape

Example: Asphalt Biochar as a modifier for asphalt binder and mixes

Potential Benefits

- Improved Rutting resistance
- Better fatigue cracking resistance
- improves high-temperature properties
- recommended for subtropical and tropical regions
- Finer may be better than courser particles

POTENTIAL IMPACT1.6 billion tons/year*
2 - 4% biochar = 64 million tons/year
May also be used in sub-base layer & along roads to improve infiltration & filtration

¹ https://www.aem.org/news/construction-aggregates-101-what-they-are-and-why-they-matter

Example: Concrete

Potential Benefits

- Curing accelerator
- Lighter weight
- Compression strength
- Flexural strength (MOR)
- Absorber of CO2/NOX
- Electromagnetic shielding
- Fire resistance
- Insulation
- Humidity Control
- Finer may be better than courser particles

POTENTIAL IMPACT

- 25 billion tons/year
- 1% biochar = 250 million tons/year
- With C content of 82% 98%
 - 205Mt 245Mt carbon sequestration
 - 738 882Mt CO2e

Example: Plaster

40% plaster 40% brochar 20% aggshells 60g

20% plaser 20% metakaslin 60%, brochar

400

Example: Drywall

Example: Composites (lumber, etc.)

Example: Tiles

Example: Grout

Example: Sewage System

Example: Lawn & Landscape

New Construction often leads to:

- Nutrient rich soil scraped away
- Compacted soils
- Poor drainage
- **Erosion** issues

Biochar can help

- Add back soil carbon & nutrients
- **Reduce compaction**
- Improve water management (infiltration,

Example: Water Pipe trenches

- Engineered thermal backfill
 - May be able to dig shallower trenches in freeze/frost zones
- Damage protection
 - Displace sand

 Courser may be better than finer particles

News and events Ichar

BIOCHAR BIOCHAR Safe, Scalable & Shovel-ready

Questions?