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Economic Methodology

Simple Economics Modeling

𝐴𝑛𝑛𝑢𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙 =
 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑙𝑖𝑓𝑒

𝐵𝑖𝑜𝑚𝑎𝑠𝑠 𝐶𝑜𝑠𝑡 =
𝐴𝑛𝑛𝑢𝑙𝑖𝑧𝑒𝑑 𝐶𝑎𝑝𝑖𝑡𝑎𝑙

𝑦𝑖𝑒𝑙𝑑
+
𝐴𝑛𝑢𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙

𝑦𝑖𝑒𝑙𝑑

30 year clash flow based on the MARINER 
economic methodology

Nth-plant assumptions

Internal Rate of Return (IRR) 10%

Plant financing debt/equity 60%/40% of total capital investment

Plant life 30 years

Income tax rate 35%

Interest rate for debt financing 8% annually

Term for debt financing 10 years

Working capital cost 5% of fixed capital)

Depreciation schedule 7-years MACRES schedule

Discounted Cash Flow Rate of Return

30 year clash flow 
incorporating time value of 
money.  Modeling work 
determines biomass selling 
price to achieve a NPV of zero 
at 30 years.
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Economic Methodology
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28% change
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Global Warming

CO2

GHG Emissions 100 Year Global Warming Potential
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Global Warming

 𝐺𝐻𝐺 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 𝐺𝑊𝑃100,𝐺𝐻𝐺 = 𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2𝑒𝑞
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Global Warming
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Including Temporal Resolution in LCA

Delucchi, M. A. 2003 

O’Hare, M., et al. 2009

Kendall, A., et al. 2009

Levasseur, A., et al. 2010

Farquharson, D., et al. 2017

Delucchi

Comparison of 
economic damage 

from emissions 

Analytical 
time horizon

Dynamic 
greenhouse gas 
concentrations O’Hare

Kendall

Levasseur

Farquharson

No single methodology 
includes all of these 
considerations
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Social Costs of Greenhouse Gases

Year
Baseline SC-

CO2

2020 $42 

2025 $46 

2030 $50 

2035 $55 

2040 $60 

2045 $64 

2050 $69 

$ of damage from 1 ton of CO2

Specific to year of emission

Discounted to present value

Year
Baseline SC-

CO2

2020 $42 

2025 $46 

2030 $50 

2035 $55 

2040 $60 

2045 $64 

2050 $69 

Source: Interagency Working Group on the Social Cost of Greenhouse Gases



Jason.Quinn@colostate.edu14

Social Costs of Greenhouse Gases
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Method 1: New LCA Method

Dynamic Global Warming Impact (DGWI) Using Baseline Social Costs of Greenhouse Gases

Year of Emission CO2 CH4 N2O

2020 1.00 29 357

2025 1.10 33 405

2030 1.19 38 452

2035 1.31 43 500

2040 1.43 48 548

2045 1.52 55 595

2050 1.64 60 643

Sproul, E., et al., Time Value of Greenhouse Gas Emissions in Life Cycle Assessment and Techno-
Economic Analysis. Environmental Science & Technology 53, 6073–6080 (2019).
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÷ 30𝑦𝑒𝑎𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑂2𝑒𝑞 =  𝐺𝐻𝐺 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 𝐺𝑊𝑃100,𝐺𝐻𝐺 𝐺𝐻𝐺 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 × 𝐷𝐺𝑊𝐼𝑖,𝐺𝐻𝐺

Sproul, E., et al., Time Value of Greenhouse Gas Emissions in Life Cycle Assessment and Techno-
Economic Analysis. Environmental Science & Technology 53, 6073–6080 (2019).

New LCA Method

32% Increase

Coal Power Plant
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Biochar Implications: Biofuel Case Study

Biomass Production
Biomass Harvest and 

Transport
Conversion

Transportation and 
Distribution

Fuels
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Biochar

• Timing of carbon flows is dynamic
• Carbon in the biochar is “sequestered”
• Carbon in biogas and fuels is released upon use
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Introduction: Conversion Systems

Algae Biomass
ProteinsCarbs. Lipids

Algae Biomass
ProteinsCarbs. Lipids

Algae Biomass
ProteinsCarbs. Lipids

Lipid Extraction
Hydrothermal 

Liquefaction (HTL)
Fractionation

Fuel Fuel
Animal feed or 

AD / CHP
Fuels & other products

300-350°C, 20 MPa

Biochar
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Nth-plant assumptions

Internal Rate of Return (IRR) 10%

Plant financing debt/equity 60%/40% of total capital investment

Plant life 30 years

Income tax rate 35%

Interest rate for debt financing 8% annually

Term for debt financing 10 years

Working capital cost 5% of fixed capital)

Depreciation schedule 7-years MACRES schedule

Discounted Cash Flow Rate of Return

30 year clash flow incorporating time value of 
money.  Modeling work determines biomass 
selling price to achieve a NPV of zero at 30 
years.

Techno-economic Methodology
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• HTL has lowest production 

costs

• Higher production costs due 

to lower fuel production

– Biomass diversion to co-

products

• Large co-product credits lead 

to overall lower fuel costs

• FOAK suffers from:

– Downscaling HTL

– Higher fixed costs

– Lower productivity

Results: Baseline TEA

77%

23%
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• Bulk Protein

– Low: $0.5 kg-1

– Baseline: $1 kg-1

– High: $1.5 kg-1

• High-value chemical product

– Low: $2 kg-1

– Baseline: $3 kg-1

– High: $4 kg-1

• Struvite (NH4MgPO4·6H2O)

– From protein fermentation

– N+P fertilizer

• Biochar

– Soil amendment

Source $ ton-1 (wet) % Crude Protein $ kg-1 Protein

Distiller’s Corn (wet) $96 29% $1.01

Corn Gluten $236 25% $1.15

Soybean Meal $490 49% $1.23

Distiller’s Grains (dry) $298 28% $1.30

Whey Protein Powder $8 – $20+

Product $ kg-1

Diesel @ $3 gge-1 $1

Succinic Acid 
(polymer precursor, food acidity regulator)

$1 – $3

Hydroquinone
(reducing agent, polymer applications)

$4 – $6

Struvite $0.55

Biochar $0.11

Co-product Prices

Shewmaker G, Hall J, Baker S. Getting the most feed nutrient for the dollar. University of Idaho 
Extension; 2013.
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• Low overall fuel cost depends 

on large co-product credits

• Results very sensitive to 

assumed co-product price

• Lower price  much higher 

fuel costs

– Inverse also true

• Accurate modeling 

assumptions critical to real-

world economic viability

– Market size & dynamics

– Small market ≠ scale-up

Results: Co-Product Price Sensitivity

$5.77

$3.10

$5.47

$3.16

$1.34

$4.01

$2.31

$4.44 $4.31

$2.67
$3.46Biochar

<$0.10
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Demonstration of Improvements
• Combination of moderate 

improvements to reach $3 gge-1

• Productivity increase

– 25 to 30 g m-2day-1

• Remove CHG

• Recycle process CO2

• Sell biochar ($100 ton-1) & 

struvite ($500 ton-1)

• Carbon capture credit

– 3% scenario: $52 – $85 ton-1

Total OPX

Net OPX

C
re

d
it

CO2 Recycle

Biochar & Struvite

Carbon capture credit

$3.84

$2.77

$2.34
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Thank You

Jason.Quinn@colostate.edu


