The Power Of Sustainability Modeling and the Importance of Methodology

Jason C. Quinn

Evan Sproul, Katherine DeRose, Jonah Greene, Hailey Summers, Jesse Cruce

Mechanical Engineering

Colorado State University

Acknowledgements

Evan Sproul

Hailey Summers

Jesse Cruce

Always looking for Good students, Post Doctorial Scholars, and Research Scientist

Sustainability Modeling

Presentation Objectives

Energy Production

Impact of temporal resolution on LCA

Microalgae Biosystem

Impact of co-product pricing on economics

Impact of TEA methodology

Economic Methodology

30 year clash flow based on the MARINER economic methodology

Discounted Cash Flow Rate of Return

N th -plant assumptions			
Internal Rate of Return (IRR)	10%		
Plant financing debt/equity	60%/40% of total capital investment		
Plant life	30 years		
Income tax rate	35%		
Interest rate for debt financing	8% annually		
Term for debt financing	10 years		
Working capital cost	5% of fixed capital)		
Depreciation schedule	7-years MACRES schedule		

30 year clash flow incorporating time value of money. Modeling work determines biomass selling price to achieve a NPV of zero at 30 years.

Capital Cost Derational Cost Loan Payment Taxes Annual Revenue

Presentation Objectives

Energy Production

Impact of temporal resolution on LCA

Microalgae Biosystem

Impact of co-product pricing on economics

Macroalgae Biosystem

Impact of TEA methodology

Global Warming

Global Warming

GHG Emissions

100 Year Global Warming Potential

$$GWP_{GHG}(100) = \frac{\int_{0}^{100} RF_{GHG}(t)dt}{\int_{0}^{100} RF_{CO_{2}}(t)dt}$$
$$GWP_{CO_{2}}(100) = 1 \quad \frac{g CO_{2}eq}{g CO_{2}}$$
$$GWP_{CH_{4}}(100) = 28 \quad \frac{g CO_{2}eq}{g CH_{4}}$$

$$GWP_{N_2O}(100) = 265 \frac{g c O_2 eq}{g N_2 O}$$

Global Warming

 $\sum GHG \ Emissions \times GWP_{100,GHG} = Total \ CO_2 eq$

Coal Power Plant

Including Temporal Resolution in LCA

Delucchi, M. A. 2003

O'Hare, M., et al. 2009

)3 Levasseur, A., et al. 2010

Farquharson, D., et al. 2017 No single methodology includes all of these considerations

Kendall, A., et al. 2009

Social Costs of Greenhouse Gases

Source: Interagency Working Group of the Social Cost of Greenhouse Gases

Social Costs of Greenhouse Gases

Source: Interagency Working Group on the Social Cost of Greenhouse Gases

Method 1: New LCA Method

 $Dynamic \ Global \ Warming \ Impact_{GHG,i} = \frac{Social \ Cost \ _{GHG,i}}{Social \ Cost \ _{CO_2,2020}}$

Dynamic Global Warming Impact (DGWI) Using Baseline Social Costs of Greenhouse Gases					
Year of Emission	CO ₂	CH ₄	N ₂ O		
2020	1.00	29	357		
2025	1.10	33	405		
2030	1.19	38	452		
2035	1.31	43	500		
2040	1.43	48	548		
2045	1.52	55	595		
2050	1.64	60	643		

Sproul, E., et al., Time Value of Greenhouse Gas Emissions in Life Cycle Assessment and Techno-Economic Analysis. *Environmental Science & Technology* **53**, 6073–6080 (2019).

New LCA Method

 $Pre Tota VOD_{2eq} = \sum GHG Emissions \times OWP_{10,0,GHG}$

🔝 COLORADO STATE UNIVERSITY

New LCA Method: Electrical Energy Production

Biochar Implications: Biofuel Case Study

Presentation Objectives

Impact of temporal resolution on LCA Microalgae Biosystem

Impact of co-product pricing on economics

Macroalgae Biosystem

Impact of TEA methodology

Introduction: Conversion Systems

Lipid Extraction

Hydrothermal Liquefaction (HTL)

Fractionation

Techno-economic Methodology

Discounted Cash Flow Rate of Return

N th -plant assumptions			
Internal Rate of Return (IRR)	10%		
Plant financing debt/equity	60%/40% of total capital investment		
Plant life	30 years		
Income tax rate	35%		
Interest rate for debt financing	8% annually		
Term for debt financing	10 years		
Working capital cost	5% of fixed capital)		
Depreciation schedule	7-years MACRES schedule		

30 year clash flow incorporating time value of money. Modeling work determines biomass selling price to achieve a NPV of zero at 30 years.

■ Capital Cost ■ Operational Cost ■ Loan Payment ■ Taxes ■ Annual Revenue

Results: Baseline TEA

77%

- HTL has lowest production costs
- Higher production costs due to lower fuel production
 - Biomass diversion to coproducts
- Large co-product credits lead
 to overall lower fuel costs
- FOAK suffers from:
 - Downscaling HTL
 - Higher fixed costs —
 - Lower productivity 23%

Co-product Prices

- Bulk Protein
 - Low: \$0.5 kg⁻¹
 - Baseline: \$1 kg⁻¹
 - High: \$1.5 kg⁻¹
- High-value chemical product
 - Low: \$2 kg⁻¹
 - Baseline: \$3 kg⁻¹
 - High: \$4 kg⁻¹
- Struvite ($NH_4MgPO_4 \cdot 6H_2O$)
 - From protein fermentation
 - N+P fertilizer
- Biochar
 - Soil amendment

Source	\$ ton ⁻¹ (wet)	% Crude Protein	\$ kg ⁻¹ Protein
Distiller's Corn (wet)	\$96	29%	\$1.01
Corn Gluten	\$236	25%	\$1.15
Soybean Meal	\$490	49%	\$1.23
Distiller's Grains (dry)	\$298	28%	\$1.30
Whey Protein Powder			\$8 – \$20+

Shewmaker G, Hall J, Baker S. Getting the most feed nutrient for the dollar. University of Idaho Extension; 2013.

Product	\$ kg-1
Diesel @ \$3 gge ⁻¹	\$1
Succinic Acid (polymer precursor, food acidity regulator)	\$1 — \$3
Hydroquinone (reducing agent, polymer applications)	\$4 — \$6

Results: Co-Product Price Sensitivity

- Low overall fuel cost depends
 on large co-product credits
- Results very sensitive to
 assumed co-product price
- Lower price → much higher fuel costs
 - Inverse also true
- Accurate modeling assumptions critical to realworld economic viability
 - Market size & dynamics
 - Small market ≠ scale-up

Demonstration of Improvements

- Combination of moderate improvements to reach \$3 gge⁻¹
- Productivity increase
 - 25 to 30 g m⁻²day⁻¹
- Remove CHG
- Recycle process CO₂
- Sell biochar (\$100 ton⁻¹) & struvite (\$500 ton⁻¹)
- Carbon capture credit
 - 3% scenario: \$52 \$85 ton-1

Presentation Objectives

Impact of temporal resolution on LCA

Microalgae Biosystem

Impact of co-product pricing on economics

Macroalgae Biosystem

Impact of TEA methodology

Thank You

Jason.Quinn@colostate.edu

