Potential Use of Biochar to Drawdown Atmospheric Carbon: A Preliminary Assessment for Washington State

J.E. Amonette*1, M. Garcia-Perez2, D. Sjoding3 and M. Fuchs4

1Pacific Northwest National Laboratory, Richland, WA
2Washington State University, Pullman, WA
3Washington State Energy Program Office, Olympia, WA
4Washington Department of Ecology, Spokane, WA

Biochar 2016
Corvallis, OR
23 August 2016
Overview

- Considerations for Drawdown of Atmospheric CO$_2$
 - Carbon Cycle Mechanisms
 - Evidence of Past Drawdown

- A Modern Drawdown Approach Using Biochar
 - Waste Woody Biomass in WA State
 - Conversion of Existing Capital Stock
 - Efficiency Relative to Biomass Combustion
 - Expected Net Drawdown
Average Temperature -80°F

Mars

Average Temperature 57°F

Earth

Source: NASA
Anthropogenic Climate Change has not always been a bad thing . . .

Ruddiman et al., 2007
Global Carbon Cycle

IPCC (2013), WG1 AR5 Chpt. 6
The whale in the room . . .

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Carbon, Pg</th>
<th>Heat Capacity, ZJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>852</td>
<td>5.2</td>
</tr>
<tr>
<td>Terrestrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>610</td>
<td>0.0</td>
</tr>
<tr>
<td>Soil (2 m)</td>
<td>1580</td>
<td>0.5</td>
</tr>
<tr>
<td>Land Ice</td>
<td>1</td>
<td>10.2</td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface (200 m)</td>
<td>1020</td>
<td>1107</td>
</tr>
<tr>
<td>Deep</td>
<td>38100</td>
<td>4420</td>
</tr>
</tbody>
</table>
The whale in the room . . .

<table>
<thead>
<tr>
<th>Reservoir</th>
<th>Carbon, Pg</th>
<th>Heat Capacity, ZJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atmosphere</td>
<td>852</td>
<td>5.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrestrial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetation</td>
<td>610</td>
<td>0.0</td>
</tr>
<tr>
<td>Soil (2 m)</td>
<td>1580</td>
<td>0.5</td>
</tr>
<tr>
<td>Land Ice</td>
<td>1</td>
<td>10.2</td>
</tr>
<tr>
<td>Ocean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface (200 m)</td>
<td>1020</td>
<td>1107</td>
</tr>
<tr>
<td>Deep</td>
<td>38100</td>
<td>4420</td>
</tr>
</tbody>
</table>
Ocean Heat Content

- Oceans absorb 93% of global heat increase
 - 7x more than all the energy consumed by humans in a year!
- Annual increase is about 4.5 ZJ
 - About 260 ZJ have been absorbed
 - Temperature in top 2000 m has risen by 0.1 °C
Ocean Carbon Chemistry

\[\text{CO}_2 + \text{H}_2\text{O} + \text{CO}_3^{2-} \leftrightarrow 2 \text{HCO}_3^- \]

- Oceans absorb about half of anthropogenic CO\(_2\) emissions
- Absorption is REVERSIBLE (over course of decades to centuries)

IPCC (2013), WG1 AR5 Chpt. 6
The Little Ice Age

Hendrick Avercamp (ca. 1608) Winter landscape with ice skaters.
Evidence for a drawdown in the Americas 1500-1600 AD

Factors contributing to Little Ice Age:
1) Pandemic followed by reforestation in the Americas (1500-1600)
2) Eruption of Huaynaputina volcano in 1600
3) Lower Solar Radiation (Maunder Minimum, 1645-1715)

Nevle and Bird, 2008
Estimates of Drawdown Size (Pg C)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrestrial</td>
<td>37</td>
<td>17</td>
<td>5-10</td>
</tr>
<tr>
<td>Ocean</td>
<td>-29</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Atmosphere</td>
<td>-8</td>
<td>-8</td>
<td>-8</td>
</tr>
<tr>
<td>Efficiency %</td>
<td>22</td>
<td>47</td>
<td>80</td>
</tr>
</tbody>
</table>

![Diagram of reforestation and biospheric C storage](image)

- Land area occupied by indigenous agriculturists circa 1491 A.D. (~1.8 x 10^7 km^2)
- Area of reforested land required for biospheric C storage
 - 38 Gt C biospheric uptake (Joos et al., 1999)
 - 20 Gt C biospheric uptake (Faust et al., 2006)

Land available for reforestation due to abandonment by 35-90 x 10^6 people (1 ha/person)
The Lowdown on Drawdowns

“It is thus virtually certain that the removal of CO$_2$ by carbon dioxide removal methods (CDR) will be partially offset by outgassing of CO$_2$ from the ocean and land ecosystems. Therefore, returning to pre-industrial CO$_2$ levels would require permanently sequestering an amount of carbon equal to total anthropogenic CO$_2$ emissions that have been released before the time of CDR, **roughly twice as much** the excess of atmospheric CO$_2$ above pre-industrial level . . .”

IPCC (2013), WG1 AR5, Chapter 6, p. 546-547.
Biochar: A Better Way to Draw Down CO$_2$

- No pandemic required!
- Multiple benefits
 - Rural Economic Development
 - Enhanced Agricultural Production
 - Water Use Efficiency
 - Forest Health
 - Filtration of Contaminants
 - Climate Change Mitigation
A State Level Approach: Washington State

- Large agricultural land area for incorporation
- Moderate soil fertility
- Adequate feedstock supply
- Need for more efficient irrigation methods
- Low carbon intensity of energy supply
Available Feedstock

5.8 M tons dry woody waste potentially available in WA
 - Logging, thinnings, mill residue, land clearing, orchard debris

3.3 M tons accounted for in 2010 solid waste survey
 - 0.9 M tons sent to landfill or incinerator
Possible Biochar Production Methods

✶ Pyrolysis (slow or fast pyrolyzers, absence of oxygen, 350-550°C, highest char yields and climate benefit, but technically complex and expensive)
Possible Biochar Production Methods

- Pyrolysis (slow or fast pyrolyzers, absence of oxygen, 350-550°C, highest char yields and climate benefit, but technically complex and expensive)

- Gasification (small units with substoichiometric levels of oxidants, 600-1000°C, lowest char yields)
Possible Biochar Production Methods

- Pyrolysis (slow or fast pyrolyzers, absence of oxygen, 350-550°C, highest char yields and climate benefit, but technically complex and expensive)
- Gasification (small units with substoichiometric levels of oxidants, 600-1000°C, lowest char yields)
- Boiler Conversion (alteration of existing wood combustion units to minimize char oxidation to ash. This can be achieved by reducing the residence time of the char inside the boiler)
 - Simpler and more economical than some of competing options
 - Alter feedstock moisture content and particle size, oxygen ratio, and biomass residence time
 - Char yields potentially comparable to other options
 - Flexible, so can maximize energy or char production as needed.
Boilers in Washington State

- Two WA Ecology surveys have been done
 - 1997 survey of all wood-waste boilers
 - 85 wood-waste boilers in 1997
 - burned 3.3 M tons wood annually
 - other feedstocks burned about 1/3 of time
 - 72% in lumber/wood products, 22% in pulp/paper products
 - Primarily spreader-stoker and pile burner (Dutch oven, fuel cell) boilers; only 3 fluidized-bed boilers
 - 2009 survey of pulp/paper mill boilers only
 - 11 mills operational
 - Biomass boilers burn 1.4 M tons annually
 - Additional 0.3 M tons biomass needed to replace all fossil fuel
 - Mix of stoker-fired and fluidized-bed boilers
 - Recovery boilers use black liquor 2/3 of time, biomass for most of rest
Stoker-fired Boiler
Fluidized-Bed Boilers

Bubbling-Bed

Circulating
Biochar is twice as effective as bioenergy for climate change mitigation in Washington after Woolf et al. (2010)
Carbon Budgets and Assumptions

- Produced biochar contains 58% C
- 1.1 t C offset/t C fixed as biochar (energy and primary productivity enhancements)
- 1 t CO$_2$ offset requires 1.02 bdt biomass
- Available biomass suggests 1.3-2.2 Mt biochar produced annually
- 2.2 Mt/yr x 100 years = 0.52 Pg CO$_2$ offset
- = 0.07 ppm CO$_2$ drawdown (0.02-0.03 ppm after degassing)
Biochar storage capacity

- 50 t biochar C (86 t biochar) applied to top 15 cm of agronomic lands
- 86 t biochar * 3.1 Mha = 265 Mt biochar maximum storage capacity
- 220 Mt biochar produced over 100 years
- Washington has a 120-year capacity for biochar and a maximum offset of 0.62 Pg CO$_2$ (ca. 0.08 ppm)
- Application to forested and pasture lands (11 Mha) and at greater depths could increase total drawdown by as much as 10-fold.
Conclusions

- Drawdown of atmospheric CO$_2$ is essential, but will require removal of all emitted (i.e., ca. 500 Pg C) due to buffering from oceans and land stocks.

- Washington state is well-positioned to demonstrate large-scale economical production of biochar using existing boilers with slight modifications to maximize char production.

- This large-scale production could increase agricultural productivity, improve water-use efficiency, and stimulate a new industry.

- Total drawdown in Washington state over a century is on the order of 0.62 Pg CO$_2$, but could be as much as 6 Pg CO$_2$ with application to agronomic, forested, and pasture lands and development of deep injection technology.
Acknowledgments

Research supported in part by:

- United Kingdom National Environmental Research Council (NERC) and Economic and Social Research Council (ESRC)
- United States Department of Energy (USDOE) Office of Fossil Energy through the National Energy Technology Laboratory
- USDOE Office of Biological and Environmental Research (OBER) through the Carbon Sequestration in Terrestrial Ecosystems (CSiTE) project and Mitigation Science Focus Area
- VenEarth Group LLC

The Pacific Northwest National Laboratory is operated for the USDOE by Battelle Memorial Institute under contract DE AC06 76RL01830.
Anthropogenic Methane

Ruddiman et al., 2007
Anthropogenic Carbon Dioxide

Ruddiman et al., 2007