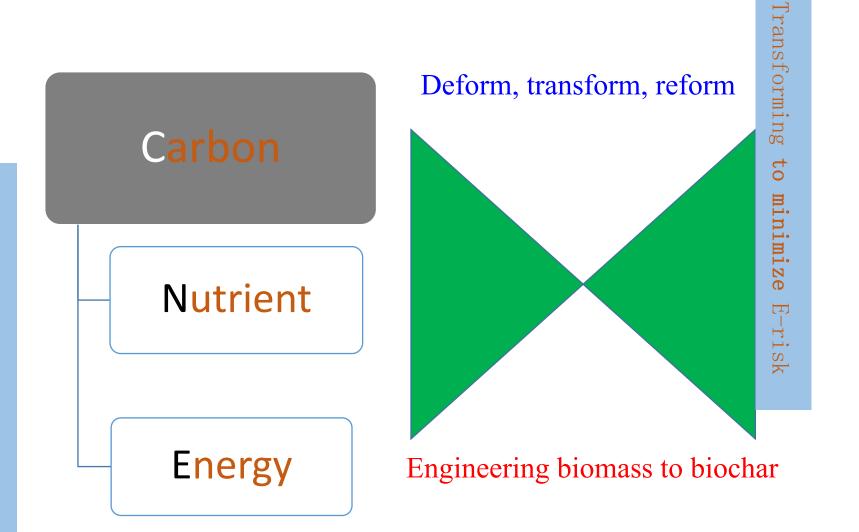


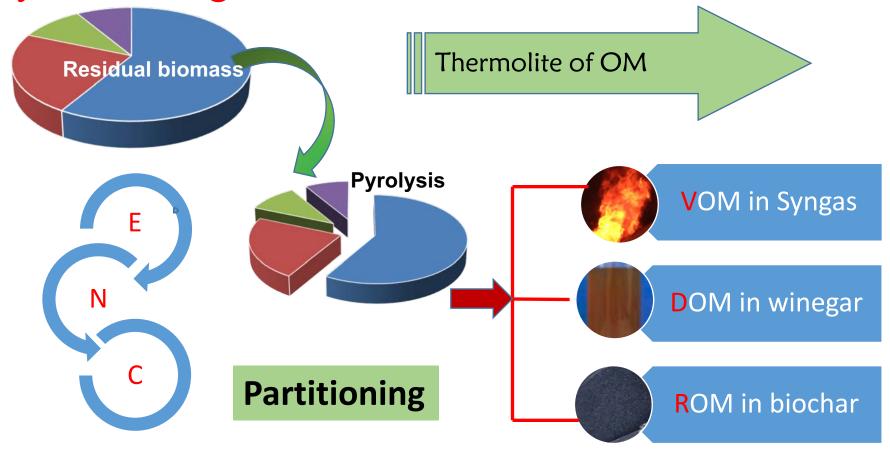
Why biochar: SOM depleting lands...

Why biochar: straw unrecycled as pollution



Totally 1 Gt, half in northern China

Partioning to maximize capit


Why biochar: safe recycling in agriculture

How biochar: Engineering pyrolysis system for agriculture and..

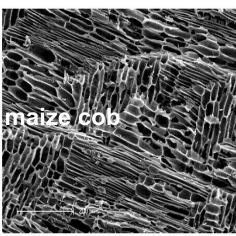
Differentiated pyrolysis, designed products and distributed system of biochar production, 3D approach

Crop straw pyrolyzer, continuous

rotatory kiln

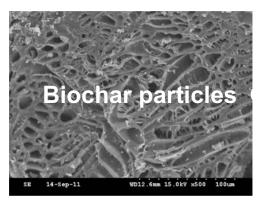
Developed by Beijing Sanju in cooperation with NJAU

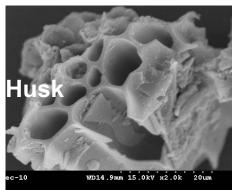
Co-Pyrolyzer: mixed feedstock



Designed biochar: single or combined

use


SA of biochar derived from(m²/g)


Wheat straw: 16.66

Maize straw: 4.49

Peanut husk: 11.08

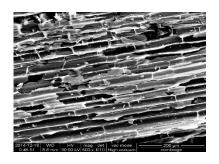
Municipal waste: 3.83

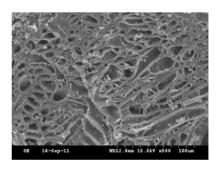
创新生物质材料:

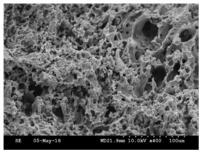
肥料炭载体、饲料炭载体、吸附剂、钝化剂、食品加工佐剂

创新生物质产品:

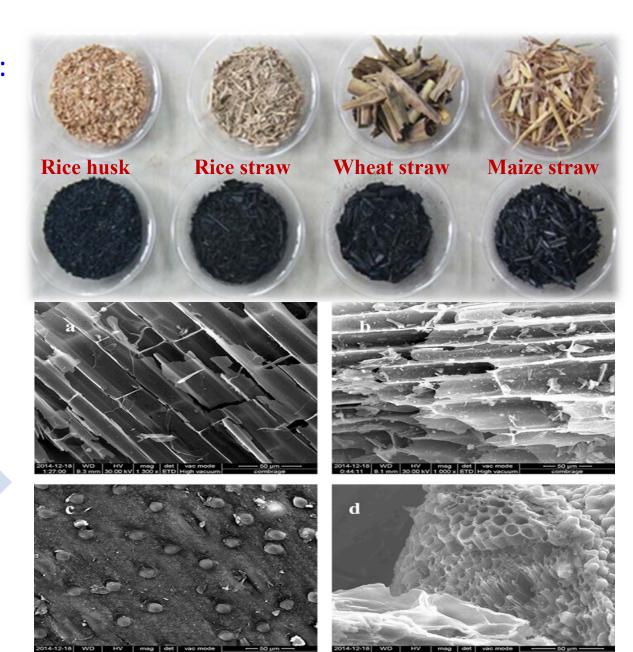
纳米盾、炭基肥、土壤改良 剂、园艺基质及融雪剂


Designed biochar: from combined feedstock to combined biochar material





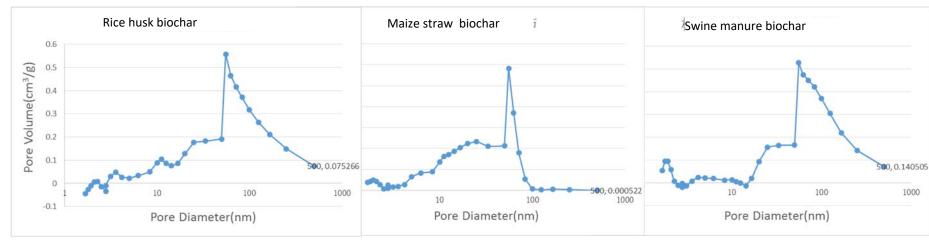




Extraction, modification, formulation and granulation...

Main feedstock: straw resource available

Properties concerned: CEC, SA, pH; VOMs, porosity; Ash,

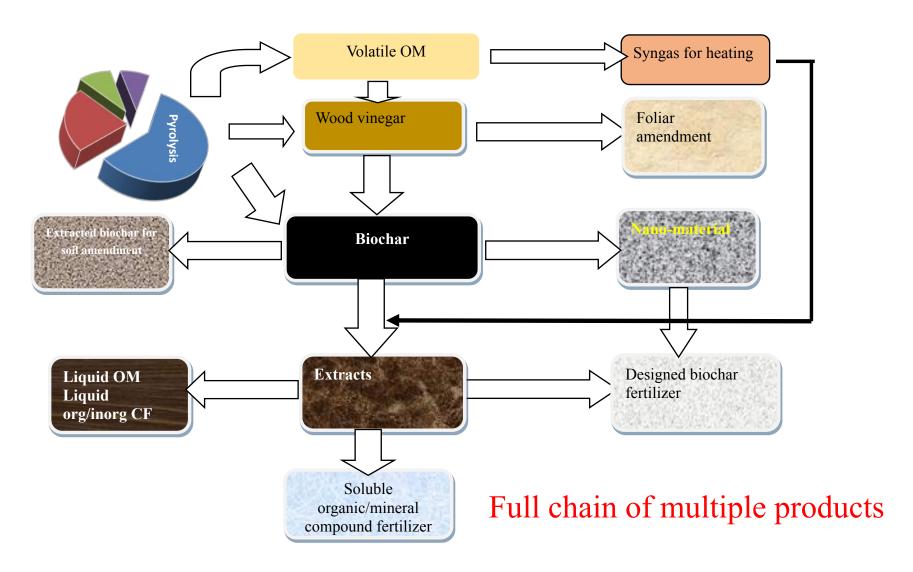


Wheat Maize

Rice
straw
Rice
husk

Porosity as a key factor: Cryo-porometry

Feedstock	Total (cm ³ /g)	Median pore size (nm)	Minimum size(nm)	Size in 95% CI (nm)
Rice husk	0.41	80.0	2.0	3.5~250
Maize straw	0.55	50.1	1.2	2-83
Swine manure	0.72	80.0	2.0	15-500



Designed biochar: VOM molecules in

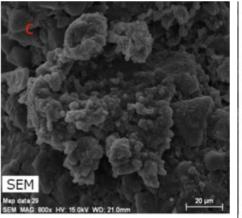
	O									
~300 species	iochar.	_	Wheat	Maize	Peanut	Wheat	Rice	Rice	Maize	Wheat
DOM 40/	10char Compound	ds	SL	SL	husk	LH	husk LH		SX	TY
DOM 4%,	2-Butenoic acid	2-丁烯酸	Y		Y	Y	Y	Y	Y	Y
Liquid OM	Triethyl phosphate	磷酸三乙酯	\mathbf{Y}	Y	\mathbf{Y}	Y	Y	_		_
	Benzenepropanoic acid	苯丙酸	_	Y	\mathbf{Y}	_	_			_
	Benzoic acid	苯甲酸	\mathbf{Y}	Y	_	Y	Y	Y	\mathbf{Y}	_
	1-pentene	1-戊烯	Y			_				_
	Phenol	苯酚	Y	Y		Y	Y	Y	Y	Y
	Cyclopentene	环戊烯	Y			_				_
	Formica acid	甲酸			Y					
	Valeric acid	戊酸	Y	Y		Y	Y		Y	
	Phthalic acid	邻苯二甲酸	Y	Y	\mathbf{Y}	_	Y	\mathbf{Y}	Y	Y
	1,2-Benzendicarboxylic	1,2-苯二羧酸	Y							
	acid	1,4-4—为妇女	1	_	_	_	_	_		_
	9,12,15-octadecatrienoic acid	9,12,15-亚麻酸	Y	_	_	Y	Y	Y	_	
	2-propenoic acid	2-丙烯酸					Y	Y	Y	
	Fumaric acid	延胡素酸	_	Y	_	_		\mathbf{Y}	_	Y
	n-Hexadecanoic acid	棕榈酸	Y	_	_	Y	_	_	Y	_
	Erucic acid	芥子酸	_	_	_	Y	Y	_	_	_
	Nicotinic acid	烟酸	_	_	_	_	_	_	Y	_
	N-Methynicotinic acid	N-甲基烟酸	_	\mathbf{Y}	_	_	_	_	Y	_
	Heptadecanoic acid	十七烷酸	Y						Y	Y
	Glycerol	甘油	Y		Y	Y	Y	Y		
	Ribitol	核糖醇		_	Y	_				_
	1-Hexadecanol	十六醇			_	_			Y	Y
(L-3180)	Behenic alcohol	二十二烷醇	Y	_	_	_			Y	_
新开木醋烷 一	Oleyl alcohol	油醇	_	_	_	\mathbf{Y}		_	_	_
	Isoquinoline	异喹啉	_	_	_	_	Y	Y	_	_
	Naphthalene	萘	_		_	_	_	_	_	Y
	Urea	尿素			_	_			\mathbf{Y}	
	1-Monolinoleoylglycerol	单酰甘油三甲	Y				_		Y	Y
	trimethylsily ether	基硅醚	1						1	1

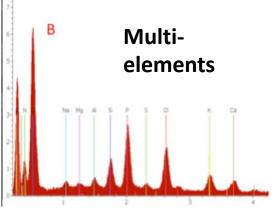
Biochar industry:

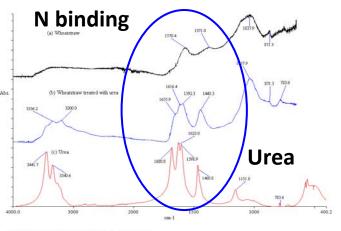
Co-production and full use of pyrolysis products

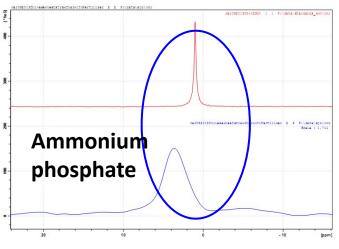
Core product:

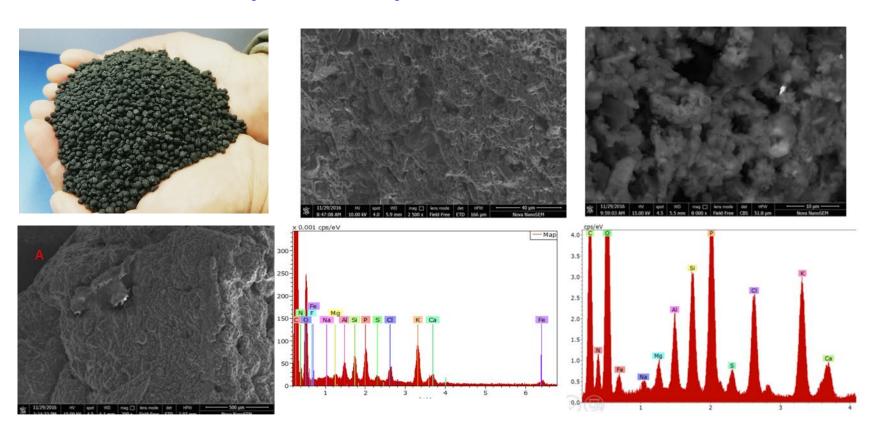
Blended biochar compound fertilizer (BCF)




-N-P₂O₅-K₂O, 15-15-10, 40%


organic/inorganic, active Vs structure OM, Habitat and nutrients, macro and micro






BCF 2nd Generation:

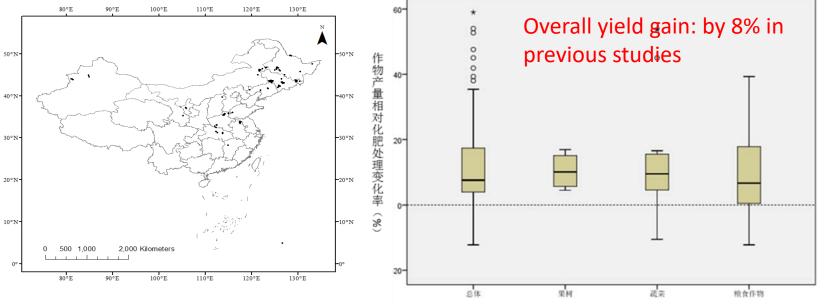
balance between org/inorg, N-P-K, major/micro, active /structured OM, quick/slow pool

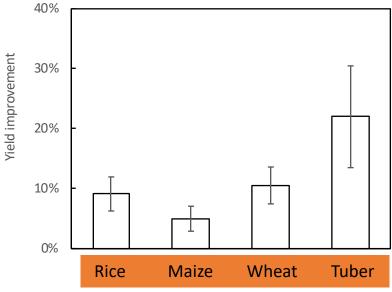
Simulating aggregates: not only for plants!

2nd BCF: Aggregate-like Compound mineral organo nano-fertilizer

2nd Generation BCF: specifications

Biochar blended compound fertilizers, crop specific


Biochar and liquid combined seedling promotor

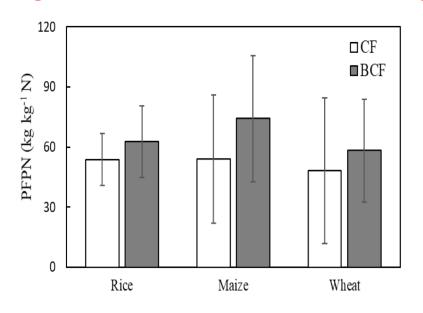

Biochar based amendment

Field demonstration in

2017

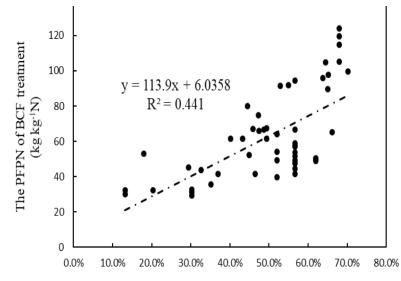
Mean yield increase by biochar fertilizer

(95% confidence intervalield gain: 11%


Rice: 9.1±1.1%; 2nd BCF

Maize: 5.0±6.2%;

Wheat:10.5±4.3%;


Comptoned to 0111/4 (Leffery et al., 2011 soil amendment 20t/ha)

Agronomic use efficiency

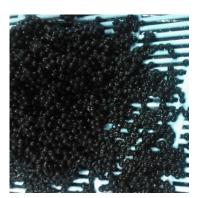
Improvement of PFPN (95% confidence interval)

- Rice:13.6±3.8%;
- Maize:47.7±10.8%;
- Wheat: 47.3±80.9%。

Increase in PFPN correlated to biochar portion in the fertilizer

Table grape at mature

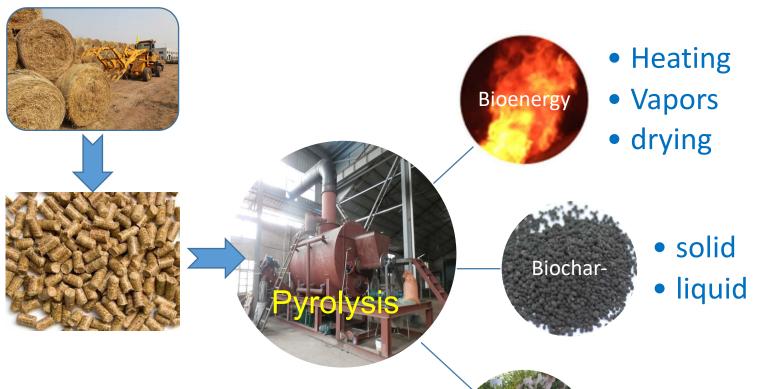
14-08-18


Quality changes (Table grape)

Fertilizer	SPAD	Fruit size (mm)	Sugar (%)	Soluble Prot (mg/g)	Vc (mg/100g)	Acidity (%)	Sugar to
CF	38.88±3.40b	21.05±1.22b	17.52±0.13b	56.91±1.18b	3.29±0.12b	0.95±0.02a	18.48±0.31b
BCF1	40.48±2.85b	24.06±1.26a	18.50±0.12a	$60.27 \pm 1.52a$	4.37±0.35a	0.86±0.03b	21.54±0.82a
BCF2	43.66±2.72a	23.10±1.27a	18.62±0.04a	$60.67 \pm 1.08a$	4.24±0.19ab	0.87±0.01b	21.34±0.21a

Improvement: 2-3mm size; 10%, sugar content but 30% for Vc, others improved by 15-20%!

Main product: Biochar soil conditioner



Combination, formulation and configuration

Distributed biomass industry

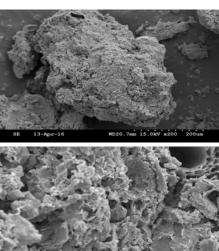
Thermolite, transform and segment only
No amendment, no synthesis and no
release of chemicals

- Soil-water
- Food/forage
- Municipal use

Distributed system of Biomass-Biochar Industry

Individual farmers, cooperative farmer groups, feedstock company...

Feedstock: local collection and processing, sealing to biochar plant via logistics



Government appraised, recognized by extension agency..

Being state policy supported

秸秆炭化还田技术受到国家部委认可

三聚绿能

Low carbon key tech, CRD

"秸秆炭化还田-技术",被国家发改委列 家重点推广的低碳技术目录。

Cutting edge tech, National **Chemical Association**

"农作物秸秆炭化还田—土壤改 良技术开发与应用"被中国石油 与化学工业联合会组织专家委员 会鉴定为国际领先水平

2014年9月

2017年4月

2017年8月

2018年8月

农业部办公厅文件 教会部办公厅关于教会发布私行 44.100.20723129.20221710.01.0017 CALLED A SECRETARY A. ERSTWETERS, ARREST TOTAL TOTAL 4.878784. ******************** ***/***************** ********************

-炭—肥还田改土模 农用十大模式"

Recommended as 10 top technique of resource recycling, MoA

中华人民共和国生态环境部办公厅 关于秸秆安化制肥项目环评类划向验的复项 HESTERSON. ST (KINTERSTRANCED SHEET SHEET WERE COME OF ALL RIS. SWIE. MENT. FACTOR, WHEGERSON (BRESTWEEN) CONTRACT CONTRACTOR AND CO. C. SERVICE SHEST THRESH (PERS) BI, NERRY THE

Appraised as comprehensive resource cycling industry, MEP

秸秆炭化制肥项目被国家生态环境部列

为"废弃资源综合利用业"

-符合国家政策方针

China's state policies regarded to biochar in agriculture

• 2012: Demonstration projec

2013: Key technologies of Lo

2015: Extension project by N

• 2017-05: Top 10 Key techno

2017-07: BCF standard issue

- 2017-11: Co-production of k sector, State Energy Bureau,
- 2018-07: Biochar technology planed by MoA;
- 2018-08: Straw to biochar f∈ MEEP,
- more to come up...

Technical advises and services provided for project

三聚炭肥示范田建设

三聚绿能

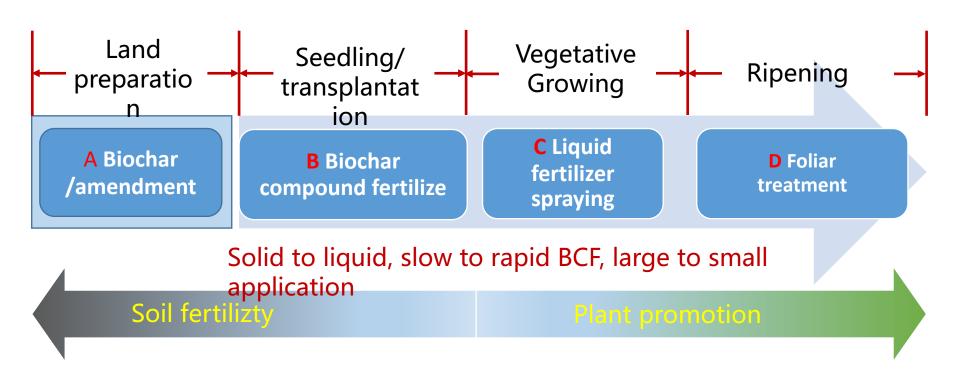
- > 示范田328块。(2018)
- ▶ 第三方权威机构试验报告146份。
- ➢ 编制《2017年生物质炭基肥料示范田报告 汇编》及《示范田建设与管理手册》。

Product standards, operation guideline and quality control protocol available

Biochar industry:

Linked to local economy development: County

From waste to wealth as from straw to biochar-based agriculture, as in Jianping Liaoning, China



From waste management to food and health improvement!

Integrated soil-plant manipulation technologies under development

Biochar fertilizer based high quality agroproducts for special sector: grain for wine

Biochar fertilizer for soybean for food: high yield and quality soybean under testing

Biochar agriculture: cobenefits should not be ignored

Biochar for new green agriculture

Government, academic, extension and business in close cooperation

